CNN-Based Detection of SARS-CoV-2 Variants Using Spike Protein Hydrophobicity DOI
Mohammad Jamhuri, Mohammad Isa Irawan, Imam Mukhlash

и другие.

Опубликована: Окт. 14, 2023

In the fight against COVID-19 pandemic, it is crucial to quickly and accurately identify SARS-Co V-2 variants due their ever-changing nature. this study, we introduce a novel approach utilizing Convolutional Neural Networks (CNN) classify spike protein sequences of virus, achieving an outstanding accuracy rate 99.75%. For method, transformed range sequences, representing diverse SARS-CoV-2 variants, into images using Kyte Doolittle method align with CNN input features. Comparative analyses existing methodologies demonstrate superior efficiency our in terms speed precision. Such advancements diagnostics play fundamental role shaping timely informed public health strategies. Our research results showcase potential deep learning tackling global challenges laying groundwork for future innovations virus diagnostics,

Язык: Английский

XCNN-SC: Explainable CNN for SARS-CoV-2 variants classification and mutation detection DOI
Elmira Yektadoust, Amin Janghorbani, Ahmad Farhad Talebi

и другие.

Computers in Biology and Medicine, Год журнала: 2023, Номер 167, С. 107606 - 107606

Опубликована: Окт. 19, 2023

Язык: Английский

Процитировано

4

Blueprint of a pandemic: Insights from SARS-CoV-2 genomics surveillance in Meghalaya, India DOI

Phibangipan Warjri,

Olisha Sumer,

Leader Langbang

и другие.

Diagnostic Microbiology and Infectious Disease, Год журнала: 2024, Номер 111(3), С. 116670 - 116670

Опубликована: Дек. 26, 2024

Язык: Английский

Процитировано

0

CNN-Based Detection of SARS-CoV-2 Variants Using Spike Protein Hydrophobicity DOI
Mohammad Jamhuri, Mohammad Isa Irawan, Imam Mukhlash

и другие.

Опубликована: Окт. 14, 2023

In the fight against COVID-19 pandemic, it is crucial to quickly and accurately identify SARS-Co V-2 variants due their ever-changing nature. this study, we introduce a novel approach utilizing Convolutional Neural Networks (CNN) classify spike protein sequences of virus, achieving an outstanding accuracy rate 99.75%. For method, transformed range sequences, representing diverse SARS-CoV-2 variants, into images using Kyte Doolittle method align with CNN input features. Comparative analyses existing methodologies demonstrate superior efficiency our in terms speed precision. Such advancements diagnostics play fundamental role shaping timely informed public health strategies. Our research results showcase potential deep learning tackling global challenges laying groundwork for future innovations virus diagnostics,

Язык: Английский

Процитировано

0