Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia DOI Open Access
Stephan Ripke, James Walters, Michael O’Donovan

и другие.

medRxiv (Cold Spring Harbor Laboratory), Год журнала: 2020, Номер unknown

Опубликована: Сен. 13, 2020

SUMMARY Schizophrenia is a psychiatric disorder whose pathophysiology largely unknown. It has heritability of 60-80%, much which attributable to common risk alleles, suggesting genome-wide association studies can inform our understanding aetiology 1 . Here, in 69,369 people with schizophrenia and 236,642 controls, we report variant associations at 270 distinct loci. Using fine-mapping functional genomic data, prioritise 19 genes based on protein-coding or UTR variation, 130 total as likely explain these associations. Fine-mapped candidates were enriched for associated rare disruptive coding variants schizophrenia, including the glutamate receptor subunit GRIN2A transcription factor SP4 , also implicated by such autism developmental disorder. Associations concentrated expressed CNS neurons, both excitatory inhibitory, but not other tissues cell types, fundamental processes related neuronal function, particularly synaptic organisation, differentiation transmission. We identify biological pathophysiological relevance show convergence neurodevelopmental disorders, provide rich resource priority advance mechanistic studies.

Язык: Английский

The GTEx Consortium atlas of genetic regulatory effects across human tissues DOI Creative Commons
François Aguet, Shankara Anand, Kristin Ardlie

и другие.

Science, Год журнала: 2020, Номер 369(6509), С. 1318 - 1330

Опубликована: Сен. 10, 2020

The Genotype-Tissue Expression (GTEx) project dissects how genetic variation affects gene expression and splicing.

Язык: Английский

Процитировано

3853

Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies DOI

Mike A. Nalls,

Cornelis Blauwendraat, Costanza L. Vallerga

и другие.

The Lancet Neurology, Год журнала: 2019, Номер 18(12), С. 1091 - 1102

Опубликована: Ноя. 6, 2019

Язык: Английский

Процитировано

2004

PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations DOI Creative Commons

Mihir Kamat,

James Blackshaw, Robin Young

и другие.

Bioinformatics, Год журнала: 2019, Номер 35(22), С. 4851 - 4853

Опубликована: Июнь 19, 2019

Abstract Summary PhenoScanner is a curated database of publicly available results from large-scale genetic association studies in humans. This online tool facilitates ‘phenome scans’, where variants are cross-referenced for with many phenotypes different types. Here we present major update (‘PhenoScanner V2’), including over 150 million and more than 65 billion associations (compared to 350 V1) diseases traits, gene expression, metabolite protein levels, epigenetic markers. The query options have been extended include searches by genes, genomic regions phenotypes, as well variants. All positionally annotated using the Variant Effect Predictor mapped Experimental Factor Ontology terms. Linkage disequilibrium statistics 1000 Genomes project can be used search phenotype proxy Availability implementation V2 at www.phenoscanner.medschl.cam.ac.uk.

Язык: Английский

Процитировано

1785

Genetic mechanisms of critical illness in COVID-19 DOI Creative Commons
Erola Pairo‐Castineira, Sara Clohisey, Lucija Klarić

и другие.

Nature, Год журнала: 2020, Номер 591(7848), С. 92 - 98

Опубликована: Дек. 11, 2020

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with may identify mechanistic targets for therapeutic development3. Here we report results of GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study 2,244 critically ill patients COVID-19 from 208 UK intensive care units. We have identified replicated following new significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 OAS3); 19p13.2 (rs74956615, 2.3 near tyrosine kinase 2 (TYK2); 19p13.3 (rs2109069, 3.98 10-12) within dipeptidyl peptidase 9 (DPP9); 21q22.1 (rs2236757, 4.99 interferon receptor IFNAR2. potential repurposing licensed medications: using Mendelian randomization, found evidence low expression IFNAR2, or high TYK2, are life-threatening disease; transcriptome-wide tissue revealed monocyte-macrophage chemotactic CCR2 severe COVID-19. Our robust signals relating to key host defence mechanisms mediators inflammatory organ damage Both be amenable targeted treatment existing drugs. However, large-scale randomized clinical trials will essential before any change practice.

Язык: Английский

Процитировано

1375

Large-scale association analyses identify host factors influencing human gut microbiome composition DOI
Alexander Kurilshikov, Carolina Medina‐Gómez, Rodrigo Bacigalupe

и другие.

Nature Genetics, Год журнала: 2021, Номер 53(2), С. 156 - 165

Опубликована: Янв. 18, 2021

Язык: Английский

Процитировано

1272

Genome-wide association studies DOI Creative Commons
Emil Uffelmann, Qin Qin Huang, Nchangwi Syntia Munung

и другие.

Nature Reviews Methods Primers, Год журнала: 2021, Номер 1(1)

Опубликована: Авг. 26, 2021

Genome-wide association studies (GWAS) test hundreds of thousands genetic variants across many genomes to find those statistically associated with a specific trait or disease. This methodology has generated myriad robust associations for range traits and diseases, the number is expected grow steadily as GWAS sample sizes increase. results have applications, such gaining insight into phenotype's underlying biology, estimating its heritability, calculating correlations, making clinical risk predictions, informing drug development programmes inferring potential causal relationships between factors health outcomes. In this Primer, we provide reader an introduction GWAS, explaining their statistical basis how they are conducted, describe state-of-the art approaches discuss limitations challenges, concluding overview current future applications results. Uffelmann et al. key considerations best practices conducting genome-wide (GWAS), techniques deriving functional inferences from in understanding disease architecture. The Primer also provides information on data sharing discusses important ethical when considering populations data.

Язык: Английский

Процитировано

1161

Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology DOI
Niamh Mullins, Andreas J. Forstner, Kevin S. O‘Connell

и другие.

Nature Genetics, Год журнала: 2021, Номер 53(6), С. 817 - 829

Опубликована: Май 17, 2021

Язык: Английский

Процитировано

1138

Opportunities and challenges for transcriptome-wide association studies DOI
Michael Wainberg, Nasa Sinnott-Armstrong, Nicholas Mancuso

и другие.

Nature Genetics, Год журнала: 2019, Номер 51(4), С. 592 - 599

Опубликована: Март 29, 2019

Язык: Английский

Процитировано

790

The MRC IEU OpenGWAS data infrastructure DOI Creative Commons

Ben Elsworth,

Matthew Lyon, Tessa Alexander

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2020, Номер unknown

Опубликована: Авг. 10, 2020

Abstract Data generated by genome-wide association studies (GWAS) are growing fast with the linkage of biobank samples to health records, and expanding capture high-dimensional molecular phenotypes. However utility these efforts can only be fully realised if their complete results collected from heterogeneous sources formats, harmonised made programmatically accessible. Here we present OpenGWAS database, an open source, access, scalable high-performance cloud-based data infrastructure that imports publishes GWAS summary datasets metadata for scientific community. Our import pipeline harmonises against dbSNP human genome reference sequence, generates reports standardises format metadata. Users access via a website, application programming interface, R Python packages, also as downloadable files rapidly queried in high performance computing environments. currently contains 126 billion genetic associations 14,582 representing range different phenotypes disease outcomes across populations. We developed packages serve conduits between available analytical tools, enabling Mendelian randomization, colocalisation analysis, fine mapping, correlation locus visualisation. is freely accessible at https://gwas.mrcieu.ac.uk , has been designed facilitate integration third party tools.

Язык: Английский

Процитировано

769

A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease DOI
Douglas P. Wightman, Iris E. Jansen, Jeanne E. Savage

и другие.

Nature Genetics, Год журнала: 2021, Номер 53(9), С. 1276 - 1282

Опубликована: Сен. 1, 2021

Язык: Английский

Процитировано

737