SN Computer Science, Год журнала: 2024, Номер 5(8)
Опубликована: Ноя. 20, 2024
Язык: Английский
SN Computer Science, Год журнала: 2024, Номер 5(8)
Опубликована: Ноя. 20, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июль 26, 2024
Язык: Английский
Процитировано
0Опубликована: Июль 11, 2024
Язык: Английский
Процитировано
0IEEE Transactions on Instrumentation and Measurement, Год журнала: 2024, Номер 73, С. 1 - 12
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2024, Номер 20(1s), С. 190 - 199
Опубликована: Март 28, 2024
Diabetes Mellitus presents a substantial health obstacle on global scale, with particular impact the elderly demographic. Prompt identification is vital for efficient control and avoidance of complications. This study introduces new Hybrid Convolutional Neural Network (CNN) Autoencoder model specifically developed accurately predicting risk diabetes at an early stage. The designed to analyze retinal images in older individuals. introduction this paper comprehensive analysis increasing incidence population underscores significance identification. Conventional approaches frequently encounter constraints terms precision specificity, which has led investigation sophisticated machine learning models. CNN–Autoencoder combines advantageous characteristics both architectures, utilizing CNN proficiency extracting spatial features Autoencoder's capability unsupervised feature learning. approach we use consists training validating using dataset from attains remarkable accuracy 90.92%, outperforming typical deep models employed diabetic risk. experimental results demonstrate superior performance accuracy, sensitivity, specificity. Comparative shows that it highly effective identifying subtle patterns indicate signs diabetes, surpassing traditional other modern methods. research findings presented make valuable contribution expanding knowledge base detection, within population. proven suggested highlights its capacity as dependable tailored instrument forecasting, thus enabling prompt interventions individualized healthcare strategies individuals susceptible diabetes.
Язык: Английский
Процитировано
0SN Computer Science, Год журнала: 2024, Номер 5(8)
Опубликована: Ноя. 20, 2024
Язык: Английский
Процитировано
0