Опубликована: Сен. 18, 2024
Язык: Английский
Опубликована: Сен. 18, 2024
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2025, Номер 188, С. 109874 - 109874
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
1Internet of Things, Год журнала: 2024, Номер 27, С. 101251 - 101251
Опубликована: Июнь 15, 2024
Язык: Английский
Процитировано
4Experimental Neurology, Год журнала: 2024, Номер 380, С. 114913 - 114913
Опубликована: Авг. 2, 2024
Spinal Cord Injury (SCI) presents a significant challenge in rehabilitation medicine, with recovery outcomes varying widely among individuals. Machine learning (ML) is promising approach to enhance the prediction of trajectories, but its integration into clinical practice requires thorough understanding efficacy and applicability. We systematically reviewed current literature on data-driven models SCI prediction. The included studies were evaluated based range criteria assessing approach, implementation, input data preferences, aimed forecast. observe tendency utilize routinely acquired data, such as International Standards for Neurological Classification (ISNCSCI), imaging, demographics, functional derived from Independence Measure (SCIM) III Functional (FIM) scores focus motor ability. Although there has been an increasing interest over time, traditional machine architectures, linear regression tree-based approaches, remained overwhelmingly popular choices implementation. This implies ample opportunities exploring architectures addressing challenges predicting recovery, including techniques limited longitudinal improving generalizability, enhancing reproducibility. conclude perspective, highlighting possible future directions drawing parallels other application fields terms diverse types (imaging, tabular, sequential, multimodal), (limited, missing, data), algorithmic needs (causal inference, robustness).
Язык: Английский
Процитировано
4Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126245 - 126245
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Computers & Chemical Engineering, Год журнала: 2025, Номер 195, С. 109031 - 109031
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
0Journal of Structural Engineering, Год журнала: 2025, Номер 151(5)
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Information and Software Technology, Год журнала: 2025, Номер unknown, С. 107722 - 107722
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Computers in Biology and Medicine, Год журнала: 2024, Номер 180, С. 108971 - 108971
Опубликована: Авг. 5, 2024
Язык: Английский
Процитировано
3medRxiv (Cold Spring Harbor Laboratory), Год журнала: 2024, Номер unknown
Опубликована: Май 4, 2024
Abstract Spinal Cord Injury (SCI) presents a significant challenge in rehabilitation medicine, with recovery outcomes varying widely among individuals. Machine learning (ML) is promising approach to enhance the prediction of trajectories, but its integration into clinical practice requires thorough understanding efficacy and applicability. We systematically reviewed current literature on data-driven models SCI prediction. The included studies were evaluated based range criteria assessing approach, implementation, input data preferences, aimed forecast. observe tendency utilize routinely acquired data, such as International Standards for Neurological Classification (ISNCSCI), imaging, demographics, functional derived from Independence Measure (SCIM) III Functional (FIM) scores focus motor ability. Although there has been an increasing interest over time, traditional machine architectures, linear regression tree-based approaches, remained overwhelmingly popular choices implementation. This implies ample opportunities exploring architectures addressing challenges predicting recovery, including techniques limited longitudinal improving generalizability, enhancing reproducibility. conclude perspective, highlighting possible future directions drawing parallels other application fields terms diverse types (imaging, tabular, sequential, multimodal), (limited, missing, data), algorithmic needs (causal inference, robustness).
Язык: Английский
Процитировано
1Pharmaceuticals, Год журнала: 2024, Номер 17(6), С. 795 - 795
Опубликована: Июнь 17, 2024
Background: Drug safety relies on advanced methods for timely and accurate prediction of side effects. To tackle this requirement, scoping review examines machine-learning approaches predicting drug-related effects with a particular focus chemical, biological, phenotypical features. Methods: This was in which comprehensive search conducted various databases from 1 January 2013 to 31 December 2023. Results: The results showed the widespread use Random Forest, k-nearest neighbor, support vector machine algorithms. Ensemble methods, particularly random forest, emphasized significance integrating chemical biological features Conclusions: article considering variety features, datasets, learning algorithms Forest best performance combining improved prediction. suggested that techniques have some potential improve drug development trials. Future work should specific feature types, selection techniques, graph-based even better
Язык: Английский
Процитировано
1