Dcuformer: Enhancing Pavement Crack Segmentation in Complex Environments with Dualcross/Upsampling Attention DOI
Jinhuan Shan, Yue Huang, Wei Jiang

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

CubicPat: Investigations on the Mental Performance and Stress Detection Using EEG Signals DOI Creative Commons
Uğur İnce,

Yunus Talu,

Aleyna Duz

и другие.

Diagnostics, Год журнала: 2025, Номер 15(3), С. 363 - 363

Опубликована: Фев. 4, 2025

Background\Objectives: Solving the secrets of brain is a significant challenge for researchers. This work aims to contribute this area by presenting new explainable feature engineering (XFE) architecture designed obtain results related stress and mental performance using electroencephalography (EEG) signals. Materials Methods: Two EEG datasets were collected detect stress. To achieve classification results, XFE model was developed, incorporating novel extraction function called Cubic Pattern (CubicPat), which generates three-dimensional vector coding channels. Classification obtained cumulative weighted iterative neighborhood component analysis (CWINCA) selector t-algorithm-based k-nearest neighbors (tkNN) classifier. Additionally, generated CWINCA Directed Lobish (DLob). Results: The CubicPat-based demonstrated both interpretability. Using 10-fold cross-validation (CV) leave-one-subject-out (LOSO) CV, introduced CubicPat-driven achieved over 95% 75% accuracies, respectively, datasets. Conclusions: interpretable deploying DLob statistical analysis.

Язык: Английский

Процитировано

1

Glaucoma diagnosis in the era of deep learning: A survey DOI Creative Commons
Mona Ashtari-Majlan, Mohammad Mahdi Dehshibi, David Masip

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124888 - 124888

Опубликована: Авг. 1, 2024

Glaucoma, a leading cause of irreversible blindness worldwide, poses significant diagnostic challenges due to its reliance on subjective evaluation. Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment. This paper provides comprehensive survey studies AI-based glaucoma diagnosis using fundus, optical coherence tomography, visual field images, with focus learning-based methods. We searched Web Science, PubMed, IEEE Xplore, Google Scholar, applying specific selection criteria identify relevant published from 2017 2023. Our analysis structured overview architectural paradigms, including convolutional neural networks, autoencoders, attention generative adversarial geometric models. Additionally, we discuss approaches extracting informative features, such as structural, statistical, hybrid techniques. Furthermore, outline key research future directions, emphasizing need larger, more diverse datasets, strategies early disease detection, multi-modal data integration, model explainability, clinical translation. is expected be useful Artificial Intelligence (AI) researchers seeking translate into practice ophthalmologists aiming improve workflows latest AI outcomes.

Язык: Английский

Процитировано

6

Low-Light Liquid Content Detection in Transparent Containers: A Benchmark DOI

Jiwei Mo,

Y. H. Tan, Ling Huang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Detection of concealed object using terahertz images: A comprehensive review DOI

Phibansabeth Nongkseh,

Samarendra Nath Sur, Debdatta Kandar

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 148, С. 110432 - 110432

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

0

Signal Super Prediction and Rock Burst Precursor Recognition Framework Based on Guided Diffusion Model with Transformer DOI Creative Commons

Mingyue Weng,

Zinan Du,

Chuncheng Cai

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(6), С. 3264 - 3264

Опубликована: Март 17, 2025

Implementing precise and advanced early warning systems for rock bursts is a crucial approach to maintaining safety during coal mining operations. At present, FEMR data play key role in monitoring providing warnings bursts. Nevertheless, conventional are associated with certain limitations, such as short time low accuracy of warning. To enhance the timeliness bolster mines, novel model has been developed. In this paper, we present framework predicting signal deep future recognizing burst precursor. The involves two models, guided diffusion transformer super prediction an auxiliary was applied Buertai database, which recognized having risk. results demonstrate that can predict 360 h (15 days) using only 12 known signal. If duration compressed by adjusting CWT window length, it becomes possible over longer spans. Additionally, achieved maximum recognition 98.07%, realizes disaster. These characteristics make our attractive

Язык: Английский

Процитировано

0

Enriching the metadata of map images: a deep learning approach with geographic information systems-based data augmentation DOI
Entaj Tarafder, Sabira Khatun, Muhammad Awais

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 181 - 203

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Dctcnet: Sequency discrete cosine transform convolution network for visual recognition DOI
Jiayong Bao, Jiangshe Zhang, Chunxia Zhang

и другие.

Neural Networks, Год журнала: 2025, Номер 185, С. 107143 - 107143

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

0

Explainable variable-weight multi-modal based deep learning framework for catheter malposition detection DOI Creative Commons
Yuhan Wang, Hak‐Keung Lam

Information Fusion, Год журнала: 2025, Номер unknown, С. 103170 - 103170

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Deep Learning-Driven Analysis of Petrophysical Dynamics in Pay Zone Quality and Reservoir Characterization DOI
Changsheng Deng, Yongke Wang,

Wu Mi

и другие.

Natural Resources Research, Год журнала: 2025, Номер unknown

Опубликована: Апрель 13, 2025

Язык: Английский

Процитировано

0

DCUFormer: Enhancing pavement crack segmentation in complex environments with dual-cross/upsampling attention DOI
Jinhuan Shan, Yue Huang, Wei Jiang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 125891 - 125891

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3