Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Diagnostics, Год журнала: 2025, Номер 15(3), С. 363 - 363
Опубликована: Фев. 4, 2025
Background\Objectives: Solving the secrets of brain is a significant challenge for researchers. This work aims to contribute this area by presenting new explainable feature engineering (XFE) architecture designed obtain results related stress and mental performance using electroencephalography (EEG) signals. Materials Methods: Two EEG datasets were collected detect stress. To achieve classification results, XFE model was developed, incorporating novel extraction function called Cubic Pattern (CubicPat), which generates three-dimensional vector coding channels. Classification obtained cumulative weighted iterative neighborhood component analysis (CWINCA) selector t-algorithm-based k-nearest neighbors (tkNN) classifier. Additionally, generated CWINCA Directed Lobish (DLob). Results: The CubicPat-based demonstrated both interpretability. Using 10-fold cross-validation (CV) leave-one-subject-out (LOSO) CV, introduced CubicPat-driven achieved over 95% 75% accuracies, respectively, datasets. Conclusions: interpretable deploying DLob statistical analysis.
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124888 - 124888
Опубликована: Авг. 1, 2024
Glaucoma, a leading cause of irreversible blindness worldwide, poses significant diagnostic challenges due to its reliance on subjective evaluation. Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment. This paper provides comprehensive survey studies AI-based glaucoma diagnosis using fundus, optical coherence tomography, visual field images, with focus learning-based methods. We searched Web Science, PubMed, IEEE Xplore, Google Scholar, applying specific selection criteria identify relevant published from 2017 2023. Our analysis structured overview architectural paradigms, including convolutional neural networks, autoencoders, attention generative adversarial geometric models. Additionally, we discuss approaches extracting informative features, such as structural, statistical, hybrid techniques. Furthermore, outline key research future directions, emphasizing need larger, more diverse datasets, strategies early disease detection, multi-modal data integration, model explainability, clinical translation. is expected be useful Artificial Intelligence (AI) researchers seeking translate into practice ophthalmologists aiming improve workflows latest AI outcomes.
Язык: Английский
Процитировано
6Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 148, С. 110432 - 110432
Опубликована: Март 10, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(6), С. 3264 - 3264
Опубликована: Март 17, 2025
Implementing precise and advanced early warning systems for rock bursts is a crucial approach to maintaining safety during coal mining operations. At present, FEMR data play key role in monitoring providing warnings bursts. Nevertheless, conventional are associated with certain limitations, such as short time low accuracy of warning. To enhance the timeliness bolster mines, novel model has been developed. In this paper, we present framework predicting signal deep future recognizing burst precursor. The involves two models, guided diffusion transformer super prediction an auxiliary was applied Buertai database, which recognized having risk. results demonstrate that can predict 360 h (15 days) using only 12 known signal. If duration compressed by adjusting CWT window length, it becomes possible over longer spans. Additionally, achieved maximum recognition 98.07%, realizes disaster. These characteristics make our attractive
Язык: Английский
Процитировано
0Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 181 - 203
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Neural Networks, Год журнала: 2025, Номер 185, С. 107143 - 107143
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
0Information Fusion, Год журнала: 2025, Номер unknown, С. 103170 - 103170
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Natural Resources Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 13, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 125891 - 125891
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3