A human-centered safe robot reinforcement learning framework with interactive behaviors DOI Creative Commons
Shangding Gu, Alap Kshirsagar, Yali Du

и другие.

Frontiers in Neurorobotics, Год журнала: 2023, Номер 17

Опубликована: Ноя. 9, 2023

Deployment of Reinforcement Learning (RL) algorithms for robotics applications in the real world requires ensuring safety robot and its environment. Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence. In this paper, we envision human-centered SRRL framework consisting three stages: safe exploration, value alignment, collaboration. We examine research gaps these areas propose to leverage interactive behaviors SRRL. Interactive enable bi-directional information transfer between humans robots, such as conversational ChatGPT. argue that need further attention from community. discuss four open challenges related robustness, efficiency, transparency, adaptability with behaviors.

Язык: Английский

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model DOI
Zhenhua Xu,

Yujia Zhang,

Enze Xie

и другие.

IEEE Robotics and Automation Letters, Год журнала: 2024, Номер 9(10), С. 8186 - 8193

Опубликована: Авг. 7, 2024

Язык: Английский

Процитировано

74

Interpretability Research of Deep Learning: A Literature Survey DOI

Biao Xu,

Guanci Yang

Information Fusion, Год журнала: 2024, Номер 115, С. 102721 - 102721

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

13

LAERACE: Taking the policy fast-track towards low-altitude economy DOI Creative Commons
Xiaoqian Sun, Shuang Wang, Xuejun Zhang

и другие.

Journal of the Air Transport Research Society, Год журнала: 2025, Номер unknown, С. 100058 - 100058

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

VLAAD: Vision and Language Assistant for Autonomous Driving DOI

SungYeon Park,

Min Jae Lee,

JiHyuk Kang

и другие.

Опубликована: Янв. 1, 2024

While interpretable decision-making is pivotal in au-tonomous driving, research integrating natural language models remains a relatively untapped. To address this, we introduce multi-modal instruction tuning dataset that facilitates learning visual instructions across diverse driving scenarios. This encompasses three primary tasks: conversation, detailed description, and complex reasoning. Capitalizing on this dataset, present LLM assistant named VLAAD. After fine-tuned from our instruction-following VLAAD demonstrates proficient interpretive capabilities spectrum of situations. We open work, model, to public github. https://github. com/sungyeonparkk/vision-assistant-for-driving

Язык: Английский

Процитировано

5

Partially Interpretable Machine Learning: Balancing Accuracy and Interpretability Through Input Space Partitioning DOI

Eric M. Vernon,

Naoki Masuyama, Yusuke Nojima

и другие.

Опубликована: Янв. 1, 2025

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Multimodal Interaction, Interfaces, and Communication: A Survey DOI Creative Commons
Ηλίας Δρίτσας, Μαρία Τρίγκα, Christos Troussas

и другие.

Multimodal Technologies and Interaction, Год журнала: 2025, Номер 9(1), С. 6 - 6

Опубликована: Янв. 14, 2025

Multimodal interaction is a transformative human-computer (HCI) approach that allows users to interact with systems through various communication channels such as speech, gesture, touch, and gaze. With advancements in sensor technology machine learning (ML), multimodal are becoming increasingly important applications, including virtual assistants, intelligent environments, healthcare, accessibility technologies. This survey concisely overviews recent interaction, interfaces, communication. It delves into integrating different input output modalities, focusing on critical technologies essential considerations fusion, temporal synchronization decision-level integration. Furthermore, the explores challenges of developing context-aware, adaptive provide seamless intuitive user experiences. Lastly, by examining current methodologies trends, this study underscores potential sheds light future research directions.

Язык: Английский

Процитировано

0

Exploring Autonomous Vehicle Technology: Advancements, Challenges, and the Critical Role of Simulation DOI
Leila Haj Meftah, Asma Cherif

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhancing passenger-vehicle interaction through multimodal explanation for unexpected behaviors of fully autonomous driving in non-driving-related tasks DOI
Jeonguk Hong, Sangyeon Kim, Sangwon Lee

и другие.

Transportation Research Part F Traffic Psychology and Behaviour, Год журнала: 2025, Номер 109, С. 1350 - 1364

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

The evolution of cybersecurity in self-driving cars: insights from bibliometric research DOI
Mário Lousã,

Henrique Teixeira,

José Morais

и другие.

International Journal of Innovation Science, Год журнала: 2025, Номер unknown

Опубликована: Фев. 10, 2025

Purpose This study aims to investigate the evolution of cybersecurity in autonomous vehicles over past decade, focusing on influential publications, leading authors, key themes and emerging research trends. Design/methodology/approach A systematic literature review was conducted using Preferred Reporting Items for Systematic Reviews Meta-Analyses approach, with data extracted from The Lens database analyzed VOSviewer Bibliometrix. provides a quantitative overview academic trends 2014 2023. analysis reveals significant growth scientific production, predominantly driven by USA, China UK. Central include network security, cyberattack prevention regulatory frameworks. Findings findings emphasize that cybersecurity, artificial intelligence (AI) regulation are critical developing secure reliable vehicular systems. Research limitations/implications Future should focus enhancing security vehicle-to-everything, vehicle-to-vehicle vehicle-to-infrastructure communications improving protocols integrating AI. Practical implications Key identified trust reliability user experience. Social highlights future directions, particularly integration AI sustainable development transportation policies. Originality/value 2023 regarding theme self-driving cars.

Язык: Английский

Процитировано

0

The Review of Human–Machine Collaborative Intelligent Interaction With Driver Cognition in the Loop DOI Open Access
Qianwen Fu, Lijun Zhang, Yiqian Xu

и другие.

Systems Research and Behavioral Science, Год журнала: 2025, Номер unknown

Опубликована: Фев. 22, 2025

ABSTRACT Background: The traditional human–vehicle relationship and the challenges posed by complex driving scenarios have led to situations where drivers experience ‘Out of Loop’ (OOTL) cognition, resulting in inefficient communication a threat safety. Purpose: cognitive state an interactive environment significantly influences level collaborative efficiency. This study investigates logic interaction modes intelligent systems that promote driver cognition loop, aiming improve Methods: paper addresses issue loop within collaboration through knowledge graphs literature reviews elucidate evolution relationships analyse key elements collaboration. By examining characteristics behaviours during driver's perception, understanding, prediction, decision‐making action phases, it summarizes impact mechanisms solutions understanding prediction as well on tasks. Finally, provides design strategies evaluation methods for development cockpit design.

Язык: Английский

Процитировано

0