2022 7th International Conference on Communication and Electronics Systems (ICCES), Год журнала: 2024, Номер unknown, С. 754 - 758
Опубликована: Дек. 16, 2024
Язык: Английский
2022 7th International Conference on Communication and Electronics Systems (ICCES), Год журнала: 2024, Номер unknown, С. 754 - 758
Опубликована: Дек. 16, 2024
Язык: Английский
Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(1), С. 159 - 159
Опубликована: Янв. 13, 2024
Water quality prediction, a well-established field with broad implications across various sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of over 170 studies conducted the last five years, we focus on application machine learning for predicting water quality. The review begins by presenting latest methodologies acquiring data. Categorizing learning-based predictions into two primary segments—indicator prediction and index prediction—further distinguishes between single-indicator multi-indicator predictions. A meticulous examination each method’s technical details follows. This article explores current cutting-edge research trends algorithms, providing perspective their prediction. It investigates utilization algorithms concludes highlighting significant challenges future directions. Emphasis placed key areas such as hydrodynamic coupling, effective data processing acquisition, mitigating model uncertainty. paper provides detailed present state principal characteristics emerging technologies
Язык: Английский
Процитировано
19Опубликована: Май 17, 2024
Язык: Английский
Процитировано
02022 7th International Conference on Communication and Electronics Systems (ICCES), Год журнала: 2024, Номер unknown, С. 754 - 758
Опубликована: Дек. 16, 2024
Язык: Английский
Процитировано
0