Automating the Packing Heuristic Design Process with Genetic Programming DOI
Edmund Burke,

Matthew R. Hyde,

Graham Kendall

и другие.

Evolutionary Computation, Год журнала: 2011, Номер 20(1), С. 63 - 89

Опубликована: Май 24, 2011

The literature shows that one-, two-, and three-dimensional bin packing knapsack are difficult problems in operational research. Many techniques, including exact, heuristic, metaheuristic approaches, have been investigated to solve these it is often not clear which method use when presented with a new instance. This paper presents an approach motivated by the goal of building computer systems can design heuristic methods. overall aim explore possibilities for automating process. We present genetic programming system automatically generate good quality each It necessary change methodology depending on problem type (one-, or problems), therefore has level generality unmatched other literature. carry out extensive suite experiments compare best human designed heuristics Note our uses same parameters all experiments. contribution this more general than those currently available, show that, using methodology, possible competitive from represents first algorithm able claim results such wide variety domains.

Язык: Английский

State-of-the-art exact and heuristic solution procedures for simple assembly line balancing DOI

Armin Schöll,

Christian Becker

European Journal of Operational Research, Год журнала: 2004, Номер 168(3), С. 666 - 693

Опубликована: Сен. 14, 2004

Язык: Английский

Процитировано

832

Metaheuristics: A bibliography DOI
Ibrahim H. Osman, Gilbert Laporte

Annals of Operations Research, Год журнала: 1996, Номер 63(5), С. 511 - 623

Опубликована: Окт. 1, 1996

Язык: Английский

Процитировано

637

A hybrid grouping genetic algorithm for bin packing DOI

Emanuel Falkenauer

Journal of Heuristics, Год журнала: 1996, Номер 2(1), С. 5 - 30

Опубликована: Янв. 1, 1996

Язык: Английский

Процитировано

587

Multi-Objective Virtual Machine Placement in Virtualized Data Center Environments DOI
Jing Xu, J.A.B. Fortes

Опубликована: Дек. 1, 2010

Server consolidation using virtualization technology has become increasingly important for improving data center efficiency. It enables one physical server to host multiple independent virtual machines (VMs), and the transparent movement of workloads from another. Fine-grained machine resource allocation reallocation are possible in order meet performance targets applications running on machines. On other hand, these capabilities create demands system management, especially large-scale centers. In this paper, a two-level control is proposed manage mappings VMs resources. The focus VM placement problem which posed as multi-objective optimization simultaneously minimizing total wastage, power consumption thermal dissipation costs. An improved genetic algorithm with fuzzy evaluation efficiently searching large solution space conveniently combining possibly conflicting objectives. simulation-based power-consumption thermal-dissipation models based profiling Blade Center, demonstrates good performance, scalability robustness our approach. Compared four well-known bin-packing algorithms two single-objective approaches, solutions obtained approach seek balance among objectives while others cannot.

Язык: Английский

Процитировано

508

An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem DOI

E. Mitchell Hopper,

Brian Turton

European Journal of Operational Research, Год журнала: 2001, Номер 128(1), С. 34 - 57

Опубликована: Янв. 1, 2001

Язык: Английский

Процитировано

501

Bin packing and cutting stock problems: Mathematical models and exact algorithms DOI
Maxence Delorme, Manuel Iori, Silvano Martello

и другие.

European Journal of Operational Research, Год журнала: 2016, Номер 255(1), С. 1 - 20

Опубликована: Апрель 29, 2016

Язык: Английский

Процитировано

330

Exploring Hyper-heuristic Methodologies with Genetic Programming DOI
Edmund Burke,

Mathew R. Hyde,

Graham Kendall

и другие.

Intelligent systems reference library, Год журнала: 2009, Номер unknown, С. 177 - 201

Опубликована: Янв. 1, 2009

Язык: Английский

Процитировано

298

State of art of optimization methods for assembly line design DOI
Brahim Rekiek, Alexandre Dolgui, Alain Delchambre

и другие.

Annual Reviews in Control, Год журнала: 2002, Номер 26(2), С. 163 - 174

Опубликована: Янв. 1, 2002

Язык: Английский

Процитировано

267

Combining a neural network with a genetic algorithm for process parameter optimization DOI

Deborah F. Cook,

Cliff T. Ragsdale,

Raymond L. Major

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2000, Номер 13(4), С. 391 - 396

Опубликована: Авг. 1, 2000

Язык: Английский

Процитировано

222

A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems DOI

Emanuel Falkenauer

Evolutionary Computation, Год журнала: 1994, Номер 2(2), С. 123 - 144

Опубликована: Июнь 1, 1994

An important class of computational problems are grouping problems, where the aim is to group together members a set (i.e., find good partition set). We show why both standard and ordering GAs fare poorly in this domain by pointing out their inherent difficulty capture regularities functional landscape problems. then propose new encoding scheme genetic operators adapted these yielding Grouping Genetic Algorithm (GGA). give an experimental comparison GGA with other applied we illustrate approach two more examples successfully treated GGA: Bin Packing Economies Scale.

Язык: Английский

Процитировано

212