
Trends in Food Science & Technology, Год журнала: 2024, Номер unknown, С. 104850 - 104850
Опубликована: Дек. 1, 2024
Язык: Английский
Trends in Food Science & Technology, Год журнала: 2024, Номер unknown, С. 104850 - 104850
Опубликована: Дек. 1, 2024
Язык: Английский
Food Chemistry, Год журнала: 2025, Номер 478, С. 143651 - 143651
Опубликована: Март 4, 2025
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер 479, С. 143805 - 143805
Опубликована: Март 9, 2025
Язык: Английский
Процитировано
0Critical Reviews in Food Science and Nutrition, Год журнала: 2025, Номер unknown, С. 1 - 32
Опубликована: Янв. 16, 2025
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures their applications quality, safety, nutrition to provide detailed insights into these aspects. The presented introduction both commonly used emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted (AFAI), desorption with through-hole alumina membrane (DIUTHAME), plasma-assisted (PALDI), low-temperature plasma (LTP). In the MSI process, particular emphasis was placed quantitative (QMSI) super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative absolute quantification, providing reliable data for composition while algorithms improved molecular spatial resolution, facilitating biomarker trace substance detection. outperformed conventional methods comprehensively exploring functional factors, discovery, monitoring processing/storage effects by discerning species distributions. However, challenges such as immature techniques, complex processing, non-standardized instruments, high costs existed. Future trends instrument enhancement, multispectral integration, analysis improvement were expected deepen our understanding of chemistry highlighting revolutionary potential research.
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер unknown, С. 143081 - 143081
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0LWT, Год журнала: 2025, Номер unknown, С. 117544 - 117544
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Analytical Atomic Spectrometry, Год журнала: 2025, Номер 40(3), С. 541 - 664
Опубликована: Янв. 1, 2025
This review discusses developments in elemental mass spectrometry, atomic absorption, emission and fluorescence, XRF LIBS, as applied to the analysis of specimens clinical interest, foods beverages. Sample preparation procedures quality assurance are also included.
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер 478, С. 143644 - 143644
Опубликована: Март 4, 2025
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер unknown, С. 144001 - 144001
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер unknown, С. 143957 - 143957
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Foods, Год журнала: 2025, Номер 14(7), С. 1235 - 1235
Опубликована: Апрель 1, 2025
Adulteration detection or authentication is considered a type of one-class classification (OCC) in chemometrics. An effective OCC model requires representative samples. However, it challenging to collect samples from all over the world. Moreover, also very hard evaluate representativeness collected In this study, we blazed new trail propose an method identify adulterated edible oils without building prediction beforehand. developed by real-time modeling, and population analysis was designed market The underlying philosophy that sum absolute centered residual (ACR) good built only authentic higher than bad detail, large number models were selecting partial out inspected using Monte Carlo sampling. Then, involved test these identified. Taking avocado as example, result, 6 40 identified then validated chemical markers. successful identification with soybean oil, corn rapeseed oil effectiveness our method. proposed provides novel idea for well other high-value food adulteration detection.
Язык: Английский
Процитировано
0