Evaluating and predicting the impact of storage conditions and packaging materials on the physical properties of paddy rice using machine learning approaches and artificial neural networks DOI

Hany S. El‐Mesery,

Azza A. Omran, Oluwasola Abayomi Adelusi

и другие.

Journal of Stored Products Research, Год журнала: 2025, Номер 112, С. 102659 - 102659

Опубликована: Апрель 19, 2025

Язык: Английский

Machine learning algorithm for estimating and optimizing the phytochemical content and physicochemical properties of okra slices in an infrared heating system DOI Creative Commons

Hany S. El‐Mesery,

Ahmed H. ElMesiry,

Evans K Quaye

и другие.

Food Chemistry X, Год журнала: 2025, Номер unknown, С. 102248 - 102248

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Application of Experimental, Numerical, and Machine Learning Techniques to Improve Drying Performance and Decrease Energy Consumption Infrared Continuous Dryer DOI Creative Commons

Hany S. El‐Mesery,

Mohamed Qenawy,

Ahmed H. ElMesiry

и другие.

Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 106025 - 106025

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Drying Time, Energy and Exergy Efficiency Prediction of Corn (Zea mays L.) at a Convective-Infrared-Rotary Dryer: Approach by an Artificial Neural Network DOI Creative Commons
Yousef Abbaspour‐Gilandeh,

Safoura Zadhossein,

Mohammad Kaveh

и другие.

Energies, Год журнала: 2025, Номер 18(3), С. 696 - 696

Опубликована: Фев. 3, 2025

Energy consumption in the drying industry has made an energy-intensive operation. In this study, time, quality properties (color, shrinkage, water activity and rehydration ratio), specific energy (S.E.C), thermal, exergy efficiency of corn using a hybrid dryer convective-infrared-rotary (CV-IR-D) were analyzed. addition, parameters predicted artificial neural network (ANN) technique. The experiments conducted at three rotary rotation speeds 4, 8 12 rpm, temperatures 45, 55 65 °C, infrared power 0.25, 0.5 0.75 kW. By increasing temperature, speed, S.E.C decreased while Deff, energy, thermal increased. highest values ratio redness (a*) lowest brightness (L*), yellowness (b*) color changes (ΔE) obtained kW, air temperature °C speed rpm. range S.E.C, during process was 5.05–28.15 MJ/kg, 3.26–29.29%, 5.5–32.33% 21.22–55.35%. prediction results ANNs showed that R for data 0.9938, 0.9906, 0.9965, 0.9874 0.9893, respectively, indicating successful prediction.

Язык: Английский

Процитировано

0

Computational intelligence and machine learning Approaches for performance evaluation of an infrared dryer: Quality analysis, drying kinetics, and thermal performance DOI

Hany S. El‐Mesery,

Mohamed Qenawy,

Ahmed H. ElMesiry

и другие.

Journal of Stored Products Research, Год журнала: 2025, Номер 112, С. 102639 - 102639

Опубликована: Март 25, 2025

Язык: Английский

Процитировано

0

Evaluating and predicting the impact of storage conditions and packaging materials on the physical properties of paddy rice using machine learning approaches and artificial neural networks DOI

Hany S. El‐Mesery,

Azza A. Omran, Oluwasola Abayomi Adelusi

и другие.

Journal of Stored Products Research, Год журнала: 2025, Номер 112, С. 102659 - 102659

Опубликована: Апрель 19, 2025

Язык: Английский

Процитировано

0