Sustainable Land Management in a European Context DOI Open Access

Thomas Weith,

Tim Barkmann,

Nadin Gaasch

и другие.

Human-environment interactions, Год журнала: 2020, Номер unknown

Опубликована: Авг. 28, 2020

This open access book is sustainable land management, focusing on sustainability goals, important drivers, existing challenges, and new ways to address certain aspects challenges through concepts by integrating different disciplines including practitioners.

Язык: Английский

Review on Convolutional Neural Networks (CNN) in vegetation remote sensing DOI
Teja Kattenborn,

Jens Leitloff,

Felix Schiefer

и другие.

ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2021, Номер 173, С. 24 - 49

Опубликована: Янв. 18, 2021

Язык: Английский

Процитировано

1187

Complexity revealed in the greening of the Arctic DOI
Isla H. Myers‐Smith, Jeffrey T. Kerby, Gareth K. Phoenix

и другие.

Nature Climate Change, Год журнала: 2020, Номер 10(2), С. 106 - 117

Опубликована: Янв. 31, 2020

Язык: Английский

Процитировано

717

Essential biodiversity variables for mapping and monitoring species populations DOI Creative Commons
Walter Jetz, Mélodie A. McGeoch, Robert Guralnick

и другие.

Nature Ecology & Evolution, Год журнала: 2019, Номер 3(4), С. 539 - 551

Опубликована: Март 11, 2019

Species distributions and abundances are undergoing rapid changes worldwide. This highlights the significance of reliable, integrated information for guiding assessing actions policies aimed at managing sustaining many functions benefits species. Here we synthesize types data approaches that required to achieve such an integration conceptualize 'essential biodiversity variables' (EBVs) a unified global capture species populations in space time. The inherent heterogeneity sparseness raw overcome by use models remotely sensed covariates inform predictions contiguous time extent. We define population EBVs as space-time-species-gram (cube) simultaneously addresses distribution or abundance multiple species, with its resolution adjusted represent available evidence acceptable levels uncertainty. essential enables monitoring single aggregate spatial taxonomic units scales relevant research decision-making. When combined ancillary environmental data, this fundamental directly underpins range ecosystem function indicators. concept present links disparate downstream uses informs vision which collection is closely infrastructure support effective assessment.

Язык: Английский

Процитировано

410

Remote sensing of terrestrial plant biodiversity DOI
Ran Wang, John A. Gamon

Remote Sensing of Environment, Год журнала: 2019, Номер 231, С. 111218 - 111218

Опубликована: Июнь 13, 2019

Язык: Английский

Процитировано

318

Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks DOI Creative Commons
Ben Weinstein, Sergio Marconi, Stephanie Bohlman

и другие.

Remote Sensing, Год журнала: 2019, Номер 11(11), С. 1309 - 1309

Опубликована: Июнь 1, 2019

Remote sensing can transform the speed, scale, and cost of biodiversity forestry surveys. Data acquisition currently outpaces ability to identify individual organisms in high resolution imagery. We outline an approach for identifying tree-crowns RGB imagery while using a semi-supervised deep learning detection network. Individual crown delineation has been long-standing challenge remote available algorithms produce mixed results. show that models leverage existing Light Detection Ranging (LIDAR)-based unsupervised generate trees are used training initial model. Despite limitations original approach, this noisy data may contain information from which neural network learn tree features. then refine model small number higher-quality hand-annotated images. validate our proposed open-canopy site National Ecological Observation Network. Our results 434,551 self-generated with addition 2848 yields accurate predictions natural landscapes. Using intersection-over-union threshold 0.5, full had average recall 0.69, precision 0.61 visually-annotated data. The rate 0.82 field collected stems. improved performance over self-supervised This demonstrates overcome lack labeled by generating methods retraining resulting quality

Язык: Английский

Процитировано

225

UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data DOI
Teja Kattenborn, Javier Lopatin, Michael Förster

и другие.

Remote Sensing of Environment, Год журнала: 2019, Номер 227, С. 61 - 73

Опубликована: Апрель 12, 2019

Язык: Английский

Процитировано

212

Uncovering Ecological Patterns with Convolutional Neural Networks DOI
Philip G. Brodrick, Andrew B. Davies, Gregory P. Asner

и другие.

Trends in Ecology & Evolution, Год журнала: 2019, Номер 34(8), С. 734 - 745

Опубликована: Май 9, 2019

Язык: Английский

Процитировано

149

Plant pangenomes for crop improvement, biodiversity and evolution DOI
Mona Schreiber, Murukarthick Jayakodi, Nils Stein

и другие.

Nature Reviews Genetics, Год журнала: 2024, Номер 25(8), С. 563 - 577

Опубликована: Фев. 20, 2024

Язык: Английский

Процитировано

32

Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics DOI
James S. Sinclair, Ellen A. R. Welti, Florian Altermatt

и другие.

Nature Ecology & Evolution, Год журнала: 2024, Номер 8(3), С. 430 - 441

Опубликована: Янв. 26, 2024

Язык: Английский

Процитировано

20

A global test of ecoregions DOI
Jeffrey R. Smith, Andrew D. Letten, Po‐Ju Ke

и другие.

Nature Ecology & Evolution, Год журнала: 2018, Номер 2(12), С. 1889 - 1896

Опубликована: Окт. 24, 2018

Язык: Английский

Процитировано

117