Explaining a Staff Rostering Problem Using Partial Solutions DOI
G. Catalano, Alexander E. I. Brownlee, David Cairns

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 179 - 193

Опубликована: Ноя. 28, 2024

Язык: Английский

Estimation of Distribution Algorithms DOI
Pedro Larrañaga, Concha Bielza

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Into the Black Box: Mining Variable Importance with XAI DOI

Kelly Hunter,

Sarah L. Thomson, Emma Hart

и другие.

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 20 - 35

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A systematic review of explainability in computational intelligence for optimization DOI Creative Commons
José Almeida, João Soares, Fernando Lezama

и другие.

Computer Science Review, Год журнала: 2025, Номер 57, С. 100764 - 100764

Опубликована: Май 22, 2025

Язык: Английский

Процитировано

0

A Review of Benchmark and Test Functions for Global Optimization Algorithms and Metaheuristics DOI Creative Commons
M.Z. Naser, ‬‬‬Mohammad Khaled al-Bashiti, Arash Teymori Gharah Tapeh

и другие.

Wiley Interdisciplinary Reviews Computational Statistics, Год журнала: 2025, Номер 17(2)

Опубликована: Май 26, 2025

ABSTRACT Benchmarking in optimization is a critical step evaluating the performance, robustness, and scalability of machine learning algorithms metaheuristics. While trends benchmark design continue to evolve, synthetic functions remain vital for fundamental stress tests theoretical evaluations. As several test have been developed derived over past decades, little attention has given classifying such rationale behind their usage. From this lens, paper reviews categorizes broad range often employed assessing optimizers More specifically, we classify based on modality, dimensionality, separability, smoothness, constraints, noise characteristics offer view that aids selecting appropriate benchmarks various algorithmic challenges. Then, review also discusses detail 25 most commonly used open literature proposes two new, highly dimensional, dynamic, challenging could be testing new algorithms. Finally, identifies gaps current benchmarking practices directions future research, as well suggests best guidelines.

Язык: Английский

Процитировано

0

Explaining a Staff Rostering Problem Using Partial Solutions DOI
G. Catalano, Alexander E. I. Brownlee, David Cairns

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 179 - 193

Опубликована: Ноя. 28, 2024

Язык: Английский

Процитировано

0