A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1 DOI Creative Commons
Emily Black,

John B. Ellis,

Ross Maidment

и другие.

Geoscientific model development, Год журнала: 2024, Номер 17(22), С. 8353 - 8372

Опубликована: Ноя. 25, 2024

Abstract. Efficient methods for predicting weather-related hazards are crucial the effective management of environmental risk. Many depend on evolution meteorological conditions over protracted periods, requiring assessments that account evolving conditions. The TAMSAT-ALERT approach addresses this challenge by combining observational monitoring with a weighted multi-year ensemble. In way, it enhances utility existing systems enabling users to combine multiple streams and forecasting data into holistic hazard assessments. forecasts now used in number regions Global South soil moisture forecasting, drought early warning agricultural decision support. model presented here, General TAMSAT-ALERT, represents significant scientific functional advance previous implementations. Notably, is applicable any variable which time series available. addition, functionality has been introduced climatological non-stationarity (for example due climate change), large-scale modes variability El Niño) persistence land-surface conditions). paper, we present full description model, along case studies its application prediction central England temperature, Pakistan vegetation African precipitation.

Язык: Английский

Advances and gaps in the science and practice of impact‐based forecasting of droughts DOI Creative Commons
Anastasiya Shyrokaya, Florian Pappenberger, Ilias Pechlivanidis

и другие.

Wiley Interdisciplinary Reviews Water, Год журнала: 2023, Номер 11(2)

Опубликована: Окт. 25, 2023

Abstract Advances in impact modeling and numerical weather forecasting have allowed accurate drought monitoring skilful forecasts that can drive decisions at the regional scale. State‐of‐the‐art early‐warning systems are currently based on statistical indicators, which do not account for dynamic vulnerabilities, hence neglect socio‐economic initiating actions. The transition from conventional physical of droughts toward impact‐based (IbF) is a recent paradigm shift early warning services, to ultimately bridge gap between science action. demand generate predictions “what will do” underpins rising interest IbF across all weather‐sensitive sectors. Despite large expected benefits, migrating this new presents myriad challenges. In article, we provide comprehensive overview IbF, outlining progress made field. Additionally, present road map highlighting current challenges limitations practice possible ways forward. We identify seven scientific practical challenges/limitations: contextual challenge (inadequate accounting spatio‐sectoral dynamics vulnerability exposure), human‐water feedbacks (neglecting how human activities influence propagation drought), typology (oversimplifying meteorological), model (reliance mainstream machine learning models), data (mainly textual) with linked sectoral geographical limitations. Our vision facilitate its use making informed timely mitigation measures, thus minimizing impacts globally. This article categorized under: Science Water > Extremes Methods Environmental Change

Язык: Английский

Процитировано

18

Customizing large-scale hydrological models: Harnessing the open data realm for impactful local applications DOI
Ilias Pechlivanidis,

Jude Lubega Musuuza

Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 59, С. 102390 - 102390

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

1

Hydrological regimes explain the seasonal predictability of streamflow extremes DOI Creative Commons
Yiheng Du, Ilaria Clemenzi, Ilias Pechlivanidis

и другие.

Environmental Research Letters, Год журнала: 2023, Номер 18(9), С. 094060 - 094060

Опубликована: Сен. 1, 2023

Abstract Advances in hydrological modeling and numerical weather forecasting have allowed hydro-climate services to provide accurate impact simulations skillful forecasts that can drive decisions at the local scale. To enhance early warnings long-term risk reduction actions, it is imperative better understand extremes explore drivers for their predictability. Here, we investigate seasonal forecast skill of streamflow over pan-European domain, further attribute discrepancy predictability river system memory as described by regimes. Streamflow about 35 400 basins, generated from E-HYPE model driven with bias-adjusted ECMWF SEAS5 meteorological forcing input, are explored. Overall results show adequate both Europe, despite spatial variability skill. The high extreme deteriorates faster a function lead time than low extreme, positive persisting up 12 20 weeks ahead extremes, respectively. A strong link between underlying regime identified through comparative analysis, indicating systems analogous memory, e.g. fast or slow response rainfall, similarly predict extremes. improve our understanding geographical areas periods, where timely information on very conditions, including controlling This consequently benefits regional national organizations embrace prediction capacity act order reduce disaster support climate adaptation.

Язык: Английский

Процитировано

12

Hydrological forecasting at impact scale: the integrated ParFlow hydrological model at 0.6 km for climate resilient water resource management over Germany DOI Creative Commons
Alexandre Belleflamme, Klaus Goergen, Niklas Wagner

и другие.

Frontiers in Water, Год журнала: 2023, Номер 5

Опубликована: Май 30, 2023

In the context of repeated droughts that have affected central Europe over last years (2018–2020, 2022), climate-resilient management water resources, based on timely information about current state terrestrial cycle and forecasts its evolution, has gained an increasing importance. To achieve this, we propose a new setup for simulations using integrated hydrological model ParFlow/CLM at high spatial temporal resolution (i.e., 0.611 km, hourly time step) Germany neighboring regions. We show this can be used as basis monitoring forecasting system aims to provide stakeholders from many sectors, but especially agriculture, with diagnostics indicators highlighting different aspects subsurface states fluxes, such storage, seepage water, capillary rise, or fraction plant available (root-)depths. The validation simulation observation-based data monthly period 2011–2020 yields good results all major components analyzed here, i.e., volumetric soil moisture, evapotranspiration, table depth, river discharge. As relies standardized grid definition recent globally static fields parameters (e.g., topography, hydraulic properties, land cover), workflow could easily transferred regions Earth, including sparsely gauged regions, since does not require calibration.

Язык: Английский

Процитировано

10

Hydrological Forecasting DOI

Kevin Sene

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

4

Leveraging GCM-based forecasts for enhanced seasonal streamflow prediction in diverse hydrological regimes DOI Creative Commons
Marc Girons Lopez, Thomas Bosshard, Louise Crochemore

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 650, С. 132504 - 132504

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

4

Tropical Cyclone Intensity Prediction using Bayesian Machine Learning with Marine Predators Algorithm on Satellite Cloud Imagery DOI Creative Commons
Mahmoud Ragab

Ain Shams Engineering Journal, Год журнала: 2025, Номер 16(3), С. 103316 - 103316

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

Hybrid approaches enhance hydrological model usability for local streamflow prediction DOI Creative Commons
Yiheng Du, Ilias Pechlivanidis

Communications Earth & Environment, Год журнала: 2025, Номер 6(1)

Опубликована: Апрель 30, 2025

Язык: Английский

Процитировано

0

What can be expected from a semi-distributed multi-model approach for streamflow forecasting? Tailoring the structure and size of a super-ensemble on the Rhône basin DOI Creative Commons
Cyril Thébault, Charles Perrin,

Sébastien Legrand

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133589 - 133589

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

High-Resolution Deep-Learning and Dynamical Climate Downscaling for Impact Modeling in Southeast South America DOI
María Laura Bettolli, Rosmeri Porfírio da Rocha, Josipa Milovac

и другие.

Earth Systems and Environment, Год журнала: 2025, Номер unknown

Опубликована: Май 30, 2025

Язык: Английский

Процитировано

0