Computers and Electronics in Agriculture, Год журнала: 2024, Номер 226, С. 109449 - 109449
Опубликована: Сен. 21, 2024
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2024, Номер 226, С. 109449 - 109449
Опубликована: Сен. 21, 2024
Язык: Английский
Horticulturae, Год журнала: 2024, Номер 10(5), С. 516 - 516
Опубликована: Май 16, 2024
Climate change poses significant challenges to agricultural productivity, making the efficient management of water resources essential for sustainable crop production. The assessment plant status is crucial understanding physiological responses stress and optimizing practices in agriculture. Proximal remote sensing techniques have emerged as powerful tools non-destructive, efficient, spatially extensive monitoring status. This review aims examine recent advancements proximal methodologies utilized assessing status, consumption, irrigation needs fruit tree crops. Several proved useful continuous estimation but strong limitations terms spatial variability. On contrary, technologies, although less precise estimates, can easily cover from medium large areas with drone or satellite images. integration would definitely improve assessment, resulting higher accuracy by integrating temporal scales. paper consists three parts: first part covers current plant-based tools, second techniques, third includes an update on combined use two methodologies.
Язык: Английский
Процитировано
9Chemical Engineering Journal, Год журнала: 2024, Номер 498, С. 155340 - 155340
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
5Chemical Engineering Journal, Год журнала: 2025, Номер unknown, С. 159474 - 159474
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Plant Direct, Год журнала: 2025, Номер 9(2)
Опубликована: Фев. 1, 2025
ABSTRACT The health and productivity of plants, particularly those in agricultural horticultural industries, are significantly affected by timely accurate disease detection. Traditional manual inspection methods labor‐intensive, subjective, often inaccurate, failing to meet the precision required modern practices. This research introduces an innovative deep transfer learning method utilizing advanced version Xception architecture, specifically designed for identifying plant diseases roses, mangoes, tomatoes. proposed model additional convolutional layers following base combined with multiple trainable dense layers, incorporating regularization dropout techniques optimize feature extraction classification. architectural enhancement enables capture complex, subtle patterns within leaf images, contributing more robust identification. A comprehensive dataset comprising 5491 images across four distinct categories was employed training, validation, testing model. experimental results showcased outstanding performance, achieving 98% accuracy, 99% precision, recall, a F1‐score. outperformed traditional as well other learning‐based methods. These emphasize potential this framework scalable, efficient, highly solution early detection, providing substantial benefits management supporting sustainable
Язык: Английский
Процитировано
0Sensors and Actuators B Chemical, Год журнала: 2025, Номер unknown, С. 137461 - 137461
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0Microsystems & Nanoengineering, Год журнала: 2025, Номер 11(1)
Опубликована: Апрель 3, 2025
Abstract Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves electromagnetic fields, making it a valuable platform for sensing applications. With continuous improvement theory, several effective universal modes have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states continuum (BIC), Fano resonance. This review begins by summarizing these core mechanisms, followed comprehensive overview six main surface-enhanced techniques across spectrum: fluorescence (SEF), Raman scattering (SERS), infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) chiral sensing. These cover wide spectral range address various optical characteristics, enabling detection molecular fingerprints, structural chirality, changes. Additionally, this summarized combined different enhanced spectra, integration with other advanced technologies, status miniaturized metamaterial systems. Finally, we assess current challenges future directions. Looking to future, anticipate that metamaterial-based will play transformative role real-time, on-site scientific, environmental, biomedical fields.
Язык: Английский
Процитировано
0Wearable electronics., Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 11, 2025
Язык: Английский
Процитировано
0Journal of Materials Chemistry A, Год журнала: 2024, Номер 12(34), С. 22396 - 22416
Опубликована: Янв. 1, 2024
Recent advances in wearable electrochemical bioelectronics offer promising solutions for sensitive, real-time detection of biomarkers agriculture.
Язык: Английский
Процитировано
3