Coffee Rust Severity Analysis in Agroforestry Systems Using Deep Learning in Peruvian Tropical Ecosystems DOI Creative Commons
Candy Ocaña, Lenin Quiñones Huatangari, Elgar Barboza

и другие.

Agriculture, Год журнала: 2024, Номер 15(1), С. 39 - 39

Опубликована: Дек. 27, 2024

Agroforestry systems can influence the occurrence and abundance of pests diseases because integrating crops with trees or other vegetation create diverse microclimates that may either enhance inhibit their development. This study analyzes severity coffee rust in two agroforestry provinces Jaén San Ignacio department Cajamarca (Peru). research used a quantitative descriptive approach, 319 photographs were collected professional camera during field trips. The segmented, classified analyzed using deep learning MobileNet VGG16 transfer models methods for measuring from SENASA Peru SENASICA Mexico. results reported grade 1 is most prevalent according to methodology (1 5% leaf affected) Mexico (0 2% affected). Moreover, proposed model presented best classification accuracy rate 94% over 50 epochs. demonstrates capacity machine algorithms disease diagnosis, which could be an alternative help experts quantify broadens future low-cost computational tools recognition

Язык: Английский

Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives DOI Creative Commons
Juan Botero-Valencia, Vanessa García Pineda, Alejandro Valencia-Arías

и другие.

Agriculture, Год журнала: 2025, Номер 15(4), С. 377 - 377

Опубликована: Фев. 11, 2025

Machine learning (ML) has revolutionized resource management in agriculture by analyzing vast amounts of data and creating precise predictive models. Precision improves agricultural productivity profitability while reducing costs environmental impact. However, ML implementation faces challenges such as managing large volumes adequate infrastructure. Despite significant advances applications sustainable agriculture, there is still a lack deep systematic understanding several areas. Challenges include integrating sources adapting models to local conditions. This research aims identify trends key players associated with use agriculture. A review was conducted using the PRISMA methodology bibliometric analysis capture relevant studies from Scopus Web Science databases. The study analyzed literature between 2007 2025, identifying 124 articles that meet criteria for certainty assessment. findings show quadratic polynomial growth publication on notable increase up 91% per year. most productive years were 2024, 2022, 2023, demonstrating growing interest field. highlights importance multiple improved decision making, soil health monitoring, interaction climate, topography, properties land crop patterns. Furthermore, evolved weather advanced technologies like Internet Things, remote sensing, smart farming. Finally, agenda need deepening expansion predominant concepts, farming, develop more detailed specialized explore new maximize benefits sustainability.

Язык: Английский

Процитировано

2

Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review DOI Creative Commons
Aritra Das,

Fahad Pathan,

Jamin Rahman Jim

и другие.

Artificial Intelligence in Agriculture, Год журнала: 2025, Номер 15(2), С. 192 - 220

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

Artificial intelligence in agriculture: applications, approaches, and adversities across pre-harvesting, harvesting, and post-harvesting phases DOI
Nidhi Upadhyay, Anuja Bhargava

Iran Journal of Computer Science, Год журнала: 2025, Номер unknown

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

0

Image-Based Blight Disease Detection in Crops using Ensemble Deep Neural Networks for Agricultural Applications DOI Creative Commons

Md Mohinur Rahaman,

Saiyed Umer, Md Azharuddin

и другие.

Journal of Natural Pesticide Research, Год журнала: 2025, Номер unknown, С. 100130 - 100130

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Classification of maize leaf diseases with deep learning: Performance evaluation of the proposed model and use of explicable artificial intelligence DOI
Feyyaz Alpsalaz, Yıldırım ÖZÜPAK, Emrah Aslan

и другие.

Chemometrics and Intelligent Laboratory Systems, Год журнала: 2025, Номер 262, С. 105412 - 105412

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Pathogen Identification using Linear Regression and Convolutional Neural Networks DOI

Harsith Adhithya Senthil Kumaran,

Aakaash Suman Suresh,

J. Prakash

и другие.

Опубликована: Апрель 29, 2025

With the increase in awareness regarding conservation of forests, we must be wary to preserve them sustainably from potential pathogens. Statistics tells us that number trees lose every year due pathogen attacks is huge and thus requires a machine learning model identify presence pathogens significantly reduce deaths per year. TIn this paper have done cumulative study about efficiency two different models namely Linear Regression CNN(Convolutional Neural Networks) achieved following accuracies with respect actual data. For an accuracy 65.71% 80.85% for CNN. Further analysis various metrics like RMS(Root Mean Square) value, MAE(Mean Absolute Error) MSE(Mean Squared Value) both models.

Язык: Английский

Процитировано

0

AI-Driven Irrigation Systems for Sustainable Water Management: A Systematic Review and Meta-Analytical Insights DOI Creative Commons
Gülcay ERCAN OĞUZTÜRK

Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 100982 - 100982

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Advances in digital camera-based phenotyping of Botrytis disease development DOI

Laura Groenenberg,

Marie Duhamel, Yuling Bai

и другие.

Trends in Plant Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Cropland classification and water stress vulnerability assessment in arid environment of Churu district, India using machine learning approach DOI
Zubairul Islam,

Azizur Rehman Siddiqui,

Sudhir Kumar Singh

и другие.

Journal of Atmospheric and Solar-Terrestrial Physics, Год журнала: 2025, Номер unknown, С. 106483 - 106483

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Machine Learning and Deep Learning Approaches for Guava Disease Detection DOI
K Paramesha,

Shruti Jalapur,

Shalini Hanok

и другие.

SN Computer Science, Год журнала: 2025, Номер 6(4)

Опубликована: Апрель 7, 2025

Язык: Английский

Процитировано

0