Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian Networks DOI Creative Commons
Qiong Chen, Jinsheng Zhang, Jiaqi Gao

и другие.

Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(7), С. 1088 - 1088

Опубликована: Июнь 27, 2024

As a bridge for international trade, maritime transportation security is crucial to the global economy. Southeast Asian waters have become high-incidence area of piracy attacks due geographic location and complex situations, posing great threat development Maritime Silk Road. In this study, factors affecting risk pirate are analyzed in depth by using Global Ship Piracy Attacks Report from IMO Integrated Shipping Information System (GISIS) database (i.e., 2013–2022) conjunction with Bayesian Network (BN) model, Expectation Maximization algorithm used train model parameters. The results show that behaviors ship’s key attacks, suggestions made reduce attacks. This study develops theoretical basis preventing controlling on ships, which helps maintain safety ship operations.

Язык: Английский

Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes DOI
Hanwen Fan,

Haiying Jia,

Xuzhuo He

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 250, С. 110311 - 110311

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

22

Embracing imperfect data: A novel data-driven Bayesian network framework for maritime accidents severity risk assessment DOI
Hanwen Fan, Jiaxin Wang,

Zheng Chang

и другие.

Ocean Engineering, Год журнала: 2025, Номер 329, С. 121212 - 121212

Опубликована: Апрель 12, 2025

Язык: Английский

Процитировано

1

Maritime security threats: Classifying and associating patterns in piracy and armed robbery incidents DOI
Coskan Sevgi̇li̇, Erkan Çakır, Remzi Fışkın

и другие.

Ocean & Coastal Management, Год журнала: 2025, Номер 266, С. 107685 - 107685

Опубликована: Апрель 15, 2025

Язык: Английский

Процитировано

0

++Unleashing Data Power: Driving Maritime Risk Analysis with Bayesian Networks DOI
Jiaxin Wang, Hanwen Fan, Zheng Chang

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111310 - 111310

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Rescue path planning for urban flood: A deep reinforcement learning–based approach DOI
Xiaoyan Li, Xia Wang

Risk Analysis, Год журнала: 2024, Номер unknown

Опубликована: Авг. 11, 2024

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning crucial for minimizing loss of life property. However, current research on often fails to adequately consider need assess area risk uncertainties bypass complex obstacles in flood scenarios, presenting significant challenges developing optimal paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms address these issues. Dual-priority experience replays backtrack punishment enhance precise estimation risks. Concurrently, random noisy networks dynamic exploration techniques encourage agent explore unknown areas environment, thereby improving sampling optimizing strategies bypassing obstacles. The constructed multiple grid simulation scenarios based real-world operations major urban disasters. These included uncertain values all passable an increased presence elements, such as narrow passages, C-shaped barriers, jagged paths, significantly raising challenge planning. comparative analysis demonstrated that only proposed could plan across nine scenarios. advances theoretical progress by extending scale unprecedented levels. It also develops RL adaptable various extremely Additionally, it provides methodological insights into artificial intelligence management.

Язык: Английский

Процитировано

2

Hotspot analysis of global piracy and armed robbery incidents at sea: A decadal review of regional vulnerabilities and security strategies DOI

Neslihan Küçük,

Serdar Yıldız, Özkan Uğurlu

и другие.

Ocean & Coastal Management, Год журнала: 2024, Номер 260, С. 107480 - 107480

Опубликована: Ноя. 20, 2024

Язык: Английский

Процитировано

2

Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian Networks DOI Creative Commons
Qiong Chen, Jinsheng Zhang, Jiaqi Gao

и другие.

Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(7), С. 1088 - 1088

Опубликована: Июнь 27, 2024

As a bridge for international trade, maritime transportation security is crucial to the global economy. Southeast Asian waters have become high-incidence area of piracy attacks due geographic location and complex situations, posing great threat development Maritime Silk Road. In this study, factors affecting risk pirate are analyzed in depth by using Global Ship Piracy Attacks Report from IMO Integrated Shipping Information System (GISIS) database (i.e., 2013–2022) conjunction with Bayesian Network (BN) model, Expectation Maximization algorithm used train model parameters. The results show that behaviors ship’s key attacks, suggestions made reduce attacks. This study develops theoretical basis preventing controlling on ships, which helps maintain safety ship operations.

Язык: Английский

Процитировано

0