Enhancing skin cancer detection with explainable artificial intelligence: A customized extended deep U-shaped encoder decoder network approach DOI Creative Commons
Debendra Muduli,

Shantanu Shookdeb,

S. Dash

и другие.

Journal of King Saud University - Science, Год журнала: 2025, Номер 0, С. 1 - 10

Опубликована: Апрель 23, 2025

Язык: Английский

An Innovative Deep Learning Framework for Skin Cancer Detection Employing ConvNeXtV2 and Focal Self-Attention Mechanisms DOI Creative Commons
B. Özdemir, İshak Paçal

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103692 - 103692

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

16

Intelligent skin lesion segmentation using deformable attention Transformer U‐Net with bidirectional attention mechanism in skin cancer images DOI Creative Commons

Lili Cai,

Keke Hou, S. Zhou

и другие.

Skin Research and Technology, Год журнала: 2024, Номер 30(8)

Опубликована: Авг. 1, 2024

Abstract Background In recent years, the increasing prevalence of skin cancers, particularly malignant melanoma, has become a major concern for public health. The development accurate automated segmentation techniques lesions holds immense potential in alleviating burden on medical professionals. It is substantial clinical importance early identification and intervention cancer. Nevertheless, irregular shape, uneven color, noise interference have presented significant challenges to precise segmentation. Therefore, it crucial develop high‐precision intelligent lesion framework treatment. Methods A precision‐driven model cancer images proposed based Transformer U‐Net, called BiADATU‐Net, which integrates deformable attention bidirectional blocks into U‐Net. encoder part utilizes with dual block, allowing adaptive learning global local features. decoder incorporates specifically tailored scSE modules within skip connection layers capture image‐specific context information strong feature fusion. Additionally, convolution aggregated two different learn features prediction. Results series experiments are conducted four image datasets (i.e., ISIC2016, ISIC2017, ISIC2018, PH2). findings show that our exhibits satisfactory performance, all achieving an accuracy rate over 96%. Conclusion Our experiment results validate BiADATU‐Net achieves competitive performance supremacy compared some state‐of‐the‐art methods. valuable field

Язык: Английский

Процитировано

4

Dcsca-Net: a dual-branch network with enhanced cross-fusion and spatial-channel attention for precise medical image segmentation DOI

Nianhao Wang,

Han Wang

The Journal of Supercomputing, Год журнала: 2025, Номер 81(5)

Опубликована: Апрель 12, 2025

Язык: Английский

Процитировано

0

Enhancing skin cancer detection with explainable artificial intelligence: A customized extended deep U-shaped encoder decoder network approach DOI Creative Commons
Debendra Muduli,

Shantanu Shookdeb,

S. Dash

и другие.

Journal of King Saud University - Science, Год журнала: 2025, Номер 0, С. 1 - 10

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0