Advances in spatial transcriptomics and related data analysis strategies DOI Creative Commons

Jun Du,

Yuchen Yang, Zhijie An

и другие.

Journal of Translational Medicine, Год журнала: 2023, Номер 21(1)

Опубликована: Май 18, 2023

Spatial transcriptomics technologies developed in recent years can provide various information including tissue heterogeneity, which is fundamental biological and medical research, have been making significant breakthroughs. Single-cell RNA sequencing (scRNA-seq) cannot spatial information, while allow gene expression to be obtained from intact sections the original physiological context at a resolution. Various insights generated into architecture further elucidation of interaction between cells microenvironment. Thus, we gain general understanding histogenesis processes disease pathogenesis, etc. Furthermore, silico methods involving widely distributed R Python packages for data analysis play essential roles deriving indispensable bioinformation eliminating technological limitations. In this review, summarize available transcriptomics, probe several applications, discuss computational strategies raise future perspectives, highlighting developmental potential.

Язык: Английский

Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution DOI Open Access
Samuel G. Rodriques, Robert R. Stickels, Aleksandrina Goeva

и другие.

Science, Год журнала: 2019, Номер 363(6434), С. 1463 - 1467

Опубликована: Март 28, 2019

Spatial positions of cells in tissues strongly influence function, yet a high-throughput, genome-wide readout gene expression with cellular resolution is lacking. We developed Slide-seq, method for transferring RNA from tissue sections onto surface covered DNA-barcoded beads known positions, allowing the locations to be inferred by sequencing. Using we localized cell types identified single-cell sequencing datasets within cerebellum and hippocampus, characterized spatial patterns Purkinje layer mouse cerebellum, defined temporal evolution type-specific responses model traumatic brain injury. These studies highlight how Slide-seq provides scalable obtaining spatially resolved data at resolutions comparable sizes individual cells.

Язык: Английский

Процитировано

1884

Exploring tissue architecture using spatial transcriptomics DOI
Anjali Rao, Dalia Barkley, Gustavo S. França

и другие.

Nature, Год журнала: 2021, Номер 596(7871), С. 211 - 220

Опубликована: Авг. 11, 2021

Язык: Английский

Процитировано

1069

Museum of spatial transcriptomics DOI Open Access
Lambda Moses, Lior Pachter

Nature Methods, Год журнала: 2022, Номер 19(5), С. 534 - 546

Опубликована: Март 10, 2022

Язык: Английский

Процитировано

727

Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder DOI Creative Commons
Kangning Dong, Shihua Zhang

Nature Communications, Год журнала: 2022, Номер 13(1)

Опубликована: Апрель 1, 2022

Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining the spatial context tissue microenvironment. Deciphering spots a needs to use their information carefully. To this end, we develop graph attention auto-encoder framework STAGATE accurately identify domains by learning low-dimensional latent embeddings via integrating and profiles. better characterize similarity at boundary domains, adopts an mechanism adaptively learn neighboring spots, optional cell type-aware module through pre-clustering expressions. We validate on diverse datasets generated different platforms with resolutions. could substantially improve identification accuracy denoise data preserving patterns. Importantly, be extended multiple consecutive sections reduce batch effects between extracting three-dimensional (3D) from reconstructed 3D effectively.

Язык: Английский

Процитировано

344

What is a cell type and how to define it? DOI Creative Commons
Hongkui Zeng

Cell, Год журнала: 2022, Номер 185(15), С. 2739 - 2755

Опубликована: Июль 1, 2022

Язык: Английский

Процитировано

278

The emerging landscape of spatial profiling technologies DOI
Jeffrey R. Moffitt, Emma Lundberg, Holger Heyn

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 23(12), С. 741 - 759

Опубликована: Июль 20, 2022

Язык: Английский

Процитировано

277

The expanding vistas of spatial transcriptomics DOI
Luyi Tian, Fei Chen, Evan Z. Macosko

и другие.

Nature Biotechnology, Год журнала: 2022, Номер 41(6), С. 773 - 782

Опубликована: Окт. 3, 2022

Язык: Английский

Процитировано

260

Spatially resolved transcriptomics adds a new dimension to genomics DOI
Ludvig Larsson, Jonas Frisén, Joakim Lundeberg

и другие.

Nature Methods, Год журнала: 2021, Номер 18(1), С. 15 - 18

Опубликована: Янв. 1, 2021

Язык: Английский

Процитировано

259

The dawn of spatial omics DOI
Dario Bressan, Giorgia Battistoni, Gregory J. Hannon

и другие.

Science, Год журнала: 2023, Номер 381(6657)

Опубликована: Авг. 3, 2023

Spatial omics has been widely heralded as the new frontier in life sciences. This term encompasses a wide range of techniques that promise to transform many areas biology and eventually revolutionize pathology by measuring physical tissue structure molecular characteristics at same time. Although field came age past 5 years, it still suffers from some growing pains: barriers entry, robustness, unclear best practices for experimental design analysis, lack standardization. In this Review, we present systematic catalog different families spatial technologies; highlight their principles, power, limitations; give perspective suggestions on biggest challenges lay ahead incredibly powerful-but hard navigate-landscape.

Язык: Английский

Процитировано

256

Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration DOI
Xiaoyu Wei, Sulei Fu, Hanbo Li

и другие.

Science, Год журнала: 2022, Номер 377(6610)

Опубликована: Сен. 1, 2022

The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct distribution, features, functions. identified an injury-induced ependymoglial cluster at the wound site as a progenitor population for potential replenishment lost neurons, through state transition process resembling neurogenesis development. Transcriptome comparisons indicated that these induced cells may originate from local resident cells. further uncovered defined neurons lesion regress immature neuron-like state. Our work establishes transcriptome profiles anamniote tetrapod decodes regeneration, thus providing mechanistic insights into vertebrate

Язык: Английский

Процитировано

181