Опубликована: Март 19, 2024
Язык: Английский
Опубликована: Март 19, 2024
Язык: Английский
Relevé des maladies transmissibles au Canada, Год журнала: 2024, Номер 50(3/4), С. 104 - 114
Опубликована: Апрель 30, 2024
Recevez le RMTC dans votre boîte courriel ABONNEZ-VOUS AUJOURD'HUI Recherche web : RMTC+abonnez-vous Connaître les tendances Recevoir directives en matière de dépistage Être à l'affût des nouveaux vaccins Apprendre sur infections émergentes la table matières directement
Процитировано
0The Innovation Medicine, Год журнала: 2024, Номер unknown, С. 100091 - 100091
Опубликована: Янв. 1, 2024
<p>The rapid emergence and global spread of infectious diseases pose significant challenges to public health. In recent years, artificial intelligence (AI) technologies have shown great potential in enhancing our ability prevent, detect, control disease outbreaks. However, as a growing interdisciplinarity field, gap exists between AI scientists biologists, limiting the full this field. This review provides comprehensive overview applications diseases, focusing on progress along four stages outbreaks: pre-pandemic, early pandemic, periodic epidemic stages. We discuss methods detection risk assessment, outbreak surveillance, diagnosis control, understanding pathogenic mechanisms. also propose primary limitations, challenges, solutions associated with tools health contexts while examining crucial considerations for future enhanced implementation. By harnessing power AI, we can develop more precise targeted strategies mitigate burden improve health.</p>
Язык: Английский
Процитировано
0medRxiv (Cold Spring Harbor Laboratory), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 2, 2024
Abstract Epidemiological surveillance typically relies on reported incidence of cases or hospitalizations, which can suffer significant reporting lags, biases and under-ascertainment. Here, we evaluated the potential viral loads measured by RT-qPCR cycle threshold (Ct) values to track epidemic trends. We used SARS-CoV-2 results from hospital testing in Massachusetts, USA, municipal California, simulations identify predictive models covariates that maximize short-term trend prediction accuracy. found Ct value distributions correlated with growth rates under real-world conditions. fitted generalized additive predict log rate direction case using features time-varying population distribution assessed models’ ability dynamics rolling two-week windows. Observed accurately predicted (growth RMSE ∼ 0.039-0.052) (AUC 0.72-0.78). Performance degraded during periods rapidly changing rate. Predictive were robust regimes sample sizes; accounting for immunity symptom status yielded no substantial improvement. Trimming outliers improved performance. These indicate analysis routine PCR tests help monitor trends, complementing traditional metrics.
Язык: Английский
Процитировано
0BMC Infectious Diseases, Год журнала: 2024, Номер 24(1)
Опубликована: Дек. 1, 2024
Abstract Mathematical models are established tools to assist in outbreak response. They help characterise complex patterns disease spread, simulate control options public health authorities decision-making, and longer-term operational financial planning. In the context of vaccine-preventable diseases (VPDs), vaccines one most-cost effective response interventions, with potential avert significant morbidity mortality through timely delivery. Models can contribute design vaccine by investigating importance timeliness, identifying high-risk areas, prioritising use limited supply, highlighting surveillance gaps reporting, determining short- long-term benefits. this review, we examine how have been used inform for 10 VPDs, provide additional insights into challenges modelling, such as data gaps, key vaccine-specific considerations, communication between modellers stakeholders. We illustrate that while policy-oriented response, they only be good them.
Язык: Английский
Процитировано
0Опубликована: Март 19, 2024
Язык: Английский
Процитировано
0