Machine learning workflows beyond linear models in low-data regimes DOI Creative Commons
David Dalmau, Matthew S. Sigman, Juan V. Alegre‐Requena

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

This work presents automated non-linear workflows for studying problems in low-data regimes alongside traditional linear models.

Язык: Английский

Computational Tools for the Prediction of Site- and Regioselectivity of Organic Reactions DOI Creative Commons
Lukas M. Sigmund,

Michele Assante,

Magnus J. Johansson

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

This article reviews computational tools for the prediction of regio- and site-selectivity organic reactions. It spans from quantum chemical procedures to deep learning models showcases application presented tools.

Язык: Английский

Процитировано

0

Prediction and Explainable Analysis of Molecular Weight Distribution of Polystyrene Based on Machine Learning and SHAP DOI Open Access
Sun‐Mou Lai, Zhitao Li, Jiajun Wang

и другие.

Macromolecular Reaction Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 25, 2025

Abstract Molecular weight distribution (MWD) is crucial for the product performance of polymers. In order to explore how process conditions affect molecules with different chain lengths, this study conducts a large number polystyrene simulations based on polymerization kinetics and validates them through pilot plant data generate reliable dataset. Machine learning methods are employed predict average molecular weights conversion rates. Compared extreme gradient boosting (XGBoost) support vector regression (SVR), fully connected neural network (FCNN) shows best performance. Furthermore, an improved FCNN model feature extractor residual structure developed MWD accurately. The polymer divided into 10 bins length, influence revealed SHapley Additive exPlanations (SHAP). Notably, reducing feed mass fraction ethylbenzene increasing charging coefficient second pre‐polymerization reactor will lead increase low Raising temperature promote decrease in proportion small molecule polymers ultra‐large polymers, thereby narrowing MWD. addition, specific target can be effectively predicted by machine learning.

Язык: Английский

Процитировано

0

Machine learning workflows beyond linear models in low-data regimes DOI Creative Commons
David Dalmau, Matthew S. Sigman, Juan V. Alegre‐Requena

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

This work presents automated non-linear workflows for studying problems in low-data regimes alongside traditional linear models.

Язык: Английский

Процитировано

0