Robustness of Spike Deconvolution for Neuronal Calcium Imaging DOI Creative Commons
Marius Pachitariu, Carsen Stringer, Kenneth D. Harris

и другие.

Journal of Neuroscience, Год журнала: 2018, Номер 38(37), С. 7976 - 7985

Опубликована: Авг. 6, 2018

Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals challenging problem. We compared multiple approaches using datasets with ground truth electrophysiology and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. introduce novel benchmark applicable recordings without electrophysiological truth, based correlation responses two stimulus repeats, used this show unconstrained NND also when run “zoomed out” ∼10,000 cell visual cortex mice either sex. Finally, we NND-based methods match performance supervised convolutional networks while avoiding some biases such methods, at much faster running times. therefore recommend spikes be inferred traces because its simplicity, efficiency, accuracy. SIGNIFICANCE STATEMENT The experimental currently allows for largest numbers cells simultaneously two-photon imaging. However, use requires neuronal firing correctly large resulting datasets. Previous studies have claimed complex learning outperform task. Unfortunately, these suffered several problems biases. When repeated analysis, same data correcting problems, simpler inference perform better. Even more importantly, can artifactual structure into trains, which turn lead erroneous scientific conclusions. Of evaluated, an extremely performed best circumstances tested, was run, insensitive parameter choices, making incorrect conclusions less likely.

Язык: Английский

A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex DOI
Saskia de Vries, Jérôme Lecoq, Michael A. Buice

и другие.

Nature Neuroscience, Год журнала: 2019, Номер 23(1), С. 138 - 151

Опубликована: Дек. 16, 2019

Язык: Английский

Процитировано

288

Cortical pattern generation during dexterous movement is input-driven DOI
Britton Sauerbrei, Jian‐Zhong Guo, Jeremy D. Cohen

и другие.

Nature, Год журнала: 2019, Номер 577(7790), С. 386 - 391

Опубликована: Дек. 25, 2019

Язык: Английский

Процитировано

279

Quantifying behavior to understand the brain DOI
Talmo Pereira, Joshua W. Shaevitz, Mala Murthy

и другие.

Nature Neuroscience, Год журнала: 2020, Номер 23(12), С. 1537 - 1549

Опубликована: Ноя. 9, 2020

Язык: Английский

Процитировано

263

Keep it real: rethinking the primacy of experimental control in cognitive neuroscience DOI Creative Commons
Samuel A. Nastase, Ariel Goldstein, Uri Hasson

и другие.

NeuroImage, Год журнала: 2020, Номер 222, С. 117254 - 117254

Опубликована: Авг. 13, 2020

Naturalistic experimental paradigms in neuroimaging arose from a pressure to test the validity of models we derive highly-controlled experiments real-world contexts. In many cases, however, such efforts led realization that developed under particular manipulations failed capture much variance outside context manipulation. The critique non-naturalistic is not recent development; it echoes persistent and subversive thread history modern psychology. brain has evolved guide behavior multidimensional world with interacting variables. assumption artificially decoupling manipulating these variables will lead satisfactory understanding may be untenable. We develop an argument for primacy naturalistic paradigms, point developments machine learning as example transformative power relinquishing control. should deployed afterthought if hope build extend beyond laboratory into real world.

Язык: Английский

Процитировано

260

Large-scale neural recordings call for new insights to link brain and behavior DOI
Anne E. Urai, Brent Doiron, Andrew M. Leifer

и другие.

Nature Neuroscience, Год журнала: 2022, Номер 25(1), С. 11 - 19

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

259

Neuromodulation of Brain State and Behavior DOI Open Access
David A. McCormick, Dennis Nestvogel, Biyu J. He

и другие.

Annual Review of Neuroscience, Год журнала: 2020, Номер 43(1), С. 391 - 415

Опубликована: Апрель 6, 2020

Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans animals reveal that these variations not random their nature, but may fact be due large part to rapid shifts neural, cognitive, behavioral states. Here we review recent advances the understanding waking state, how generated, they modulate neural mice humans. We propose brain has an identifiable set states through which it wanders continuously a nonrandom fashion, owing ascending modulatory fast-acting corticocortical subcortical-cortical pathways. These state provide backdrop upon operates, them is critical making progress revealing mechanisms underlying cognition behavior.

Язык: Английский

Процитировано

253

Macroscopic gradients of synaptic excitation and inhibition in the neocortex DOI
Xiao‐Jing Wang

Nature reviews. Neuroscience, Год журнала: 2020, Номер 21(3), С. 169 - 178

Опубликована: Фев. 6, 2020

Язык: Английский

Процитировано

249

Deep posteromedial cortical rhythm in dissociation DOI

Sam Vesuna,

Isaac Kauvar, Ethan B. Richman

и другие.

Nature, Год журнала: 2020, Номер 586(7827), С. 87 - 94

Опубликована: Сен. 16, 2020

Язык: Английский

Процитировано

232

B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors DOI Creative Commons
Alexander Hsu, Eric A. Yttri

Nature Communications, Год журнала: 2021, Номер 12(1)

Опубликована: Авг. 31, 2021

Abstract Studying naturalistic animal behavior remains a difficult objective. Recent machine learning advances have enabled limb localization; however, extracting behaviors requires ascertaining the spatiotemporal patterns of these positions. To provide link from poses to actions and their kinematics, we developed B-SOiD - an open-source, unsupervised algorithm that identifies without user bias. By training classifier on pose pattern statistics clustered using new methods, our approach achieves greatly improved processing speed ability generalize across subjects or labs. Using frameshift alignment paradigm, overcomes previous temporal resolution barriers. only single, off-the-shelf camera, provides categories sub-action for trained kinematic measures individual trajectories in any model. These behavioral are but critical obtain, particularly study rodent other models pain, OCD, movement disorders.

Язык: Английский

Процитировано

223

Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions DOI Creative Commons
Lucas Pinto, Kanaka Rajan, Brian DePasquale

и другие.

Neuron, Год журнала: 2019, Номер 104(4), С. 810 - 824.e9

Опубликована: Сен. 26, 2019

Язык: Английский

Процитировано

217