Mechanical Performance of Copper‐Nanocluster‐Polymer Nanolattices DOI

Jin Tang,

Heyi Liang,

An Ren

и другие.

Advanced Materials, Год журнала: 2024, Номер 36(26)

Опубликована: Март 30, 2024

A type of copper-nanocluster-polymer composites is reported and showcased that their 3D nanolattices exhibit a superior combination high strength, toughness, deformability, resilience, damage-tolerance. Notably, the strength toughness ultralight in some cases surpass current best performers, including alumina, nickel, other ceramic or metallic lattices at low densities. Additionally, are super-resilient, crack-resistant, one-step printed under ambient condition which can be easily integrated into sophisticated microsystems as highly effective internal protectors. The findings suggest that, unlike traditional nanocomposites, laser-induced interface fraction ultrasmall Cu

Язык: Английский

Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design DOI Open Access
Xiaoyang Zheng, Xubo Zhang, Ta‐Te Chen

и другие.

Advanced Materials, Год журнала: 2023, Номер 35(45)

Опубликована: Июнь 19, 2023

Abstract Mechanical metamaterials are meticulously designed structures with exceptional mechanical properties determined by their microstructures and constituent materials. Tailoring material geometric distribution unlocks the potential to achieve unprecedented bulk functions. However, current metamaterial design considerably relies on experienced designers' inspiration through trial error, while investigating responses entails time‐consuming testing or computationally expensive simulations. Nevertheless, recent advancements in deep learning have revolutionized process of metamaterials, enabling property prediction geometry generation without prior knowledge. Furthermore, generative models can transform conventional forward into inverse design. Many studies implementation highly specialized, pros cons may not be immediately evident. This critical review provides a comprehensive overview capabilities prediction, generation, metamaterials. Additionally, this highlights leveraging create universally applicable datasets, intelligently intelligence. article is expected valuable only researchers working but also those field materials informatics.

Язык: Английский

Процитировано

129

Inverse Design of Energy‐Absorbing Metamaterials by Topology Optimization DOI Creative Commons
Qingliang Zeng, Shengyu Duan, Zeang Zhao

и другие.

Advanced Science, Год журнала: 2022, Номер 10(4)

Опубликована: Дек. 11, 2022

Compared with the forward design method through control of geometric parameters and material types, inverse based on target stress-strain curve is helpful for discovery new structures. This study proposes an optimization strategy mechanical metamaterials a genetic algorithm establishes topology energy-absorbing structures desired curves. A series structural mutation algorithms design-domain-independent mesh generation are developed to improve efficiency finite element analysis iteration. The realizes ideal structures, which verified by additive manufacturing experimental characterization. error between designed structure less than 5%, densification strain reaches 0.6. Furthermore, special attention paid passive pedestrian protection occupant protection, reasonable solution given multiplatform structure. proposed framework provides path elastic-plastic large deformation problem that unable be resolved using classical gradient or algorithms, simplifies process metamaterials.

Язык: Английский

Процитировано

80

Data‐Driven Design for Metamaterials and Multiscale Systems: A Review DOI Creative Commons
Doksoo Lee, Wei Chen, Liwei Wang

и другие.

Advanced Materials, Год журнала: 2023, Номер 36(8)

Опубликована: Дек. 5, 2023

Abstract Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability assembled into multiscale systems, they hold great promise for realizing next‐generation devices exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges their design. A compelling paradigm could bring full potential metamaterials fruition is emerging: data‐driven This review provides a holistic overview this rapidly evolving field, emphasizing general methodology instead specific domains deployment contexts. Existing research organized modules, encompassing data acquisition, machine learning‐based cell design, optimization. The approaches further categorized within each module based on shared principles, analyze compare strengths applicability, explore connections between different identify open questions opportunities.

Язык: Английский

Процитировано

76

Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing DOI
Xiao Kuang, Qiangzhou Rong,

Saud Belal

и другие.

Science, Год журнала: 2023, Номер 382(6675), С. 1148 - 1155

Опубликована: Дек. 7, 2023

Volumetric printing, an emerging additive manufacturing technique, builds objects with enhanced printing speed and surface quality by forgoing the stepwise ink-renewal step. Existing volumetric techniques almost exclusively rely on light energy to trigger photopolymerization in transparent inks, limiting material choices build sizes. We report a self-enhancing sonicated ink (or sono-ink) design corresponding focused-ultrasound writing technique for deep-penetration acoustic (DAVP). used experiments modeling study frequency scanning rate-dependent behaviors. DAVP achieves key features of low streaming, rapid sonothermal polymerization, large depth, enabling hydrogels nanocomposites various shapes regardless their optical properties. also allows at centimeter depths through biological tissues, paving way toward minimally invasive medicine.

Язык: Английский

Процитировано

57

Disordered mechanical metamaterials DOI
Michael Zaiser, Stefano Zapperi

Nature Reviews Physics, Год журнала: 2023, Номер 5(11), С. 679 - 688

Опубликована: Сен. 29, 2023

Язык: Английский

Процитировано

44

Inverse design of phononic meta-structured materials DOI Creative Commons

Hao-Wen Dong,

Chen Shen, Ze Liu

и другие.

Materials Today, Год журнала: 2024, Номер 80, С. 824 - 855

Опубликована: Окт. 4, 2024

Язык: Английский

Процитировано

24

Aperiodicity is all you need: Aperiodic monotiles for high-performance composites DOI Creative Commons
Jiyoung Jung, Ailin Chen, Grace X. Gu

и другие.

Materials Today, Год журнала: 2024, Номер 73, С. 1 - 8

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

17

3D polycatenated architected materials DOI
Wenjie Zhou,

Sujeeka Nadarajah,

Liuchi Li

и другие.

Science, Год журнала: 2025, Номер 387(6731), С. 269 - 277

Опубликована: Янв. 16, 2025

Architected materials derive their properties from the geometric arrangement of internal structural elements. Their designs rely on continuous networks members to control global mechanical behavior bulk. In this study, we introduce a class that consist discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected (PAMs). We propose general design framework translates arbitrary crystalline into particle concatenations and geometries. response small external loads, PAMs behave like non-Newtonian fluids, showing both shear-thinning shear-thickening responses, which can be controlled by catenation topologies. At larger strains, lattices foams, with nonlinear stress-strain relation. microscale, demonstrate change shapes applied electrostatic charges. The distinctive pave path for developing stimuli-responsive materials, energy-absorbing systems, morphing architectures.

Язык: Английский

Процитировано

6

Generative deep learning for designing irregular metamaterials with programmable nonlinear mechanical responses DOI

Zhuoyi Wei,

Jiaxin Chen, Kai Wei

и другие.

International Journal of Mechanical Sciences, Год журнала: 2025, Номер unknown, С. 110123 - 110123

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

A deep learning approach for inverse design of gradient mechanical metamaterials DOI
Qingliang Zeng, Zeang Zhao, Hongshuai Lei

и другие.

International Journal of Mechanical Sciences, Год журнала: 2022, Номер 240, С. 107920 - 107920

Опубликована: Ноя. 7, 2022

Язык: Английский

Процитировано

68