Machine learning-enabled optoelectronic material discovery: a comprehensive review DOI Open Access
Yu Shu, Naihua Miao,

R. J. Li

и другие.

Journal of Materials Informatics, Год журнала: 2025, Номер 5(3)

Опубликована: Май 28, 2025

The development of advanced optoelectronic materials constitutes a pivotal frontier in modern energy and communication technologies, facilitating critical energy-photon-electron interconversion processes that underpin sustainable infrastructures high-performance electronic devices. However, the discovery optimization novel face substantial hurdles arising from complicated structure-property interdependencies, prohibitive costs, protracted innovation cycles. Conventional empirical approaches computational simulations usually exhibit limited efficacy addressing escalating demands for with superior stability, economic viability, customizable properties. integration machine learning (ML) high-throughput screening has emerged as transformative strategy to address these challenges. By rapidly processing large multidimensional datasets predicting material properties such structure, thermodynamic charge transport behaviors, ML offers unprecedented capabilities efficient rational design materials. This review provides comprehensive overview cutting-edge ML-driven methodologies emphasis on workflows, data strategies, model frameworks. We also discuss challenges prospects applications, particularly standardization, interpretability closed-loop experimental validation. further propose potential artificial intelligence autonomous laboratories build powerful pipeline advance

Язык: Английский

Quantitative Link between Potential Losses and Perovskite Solar Cell Stability During Accelerated Ageing DOI
Zijian Peng, Jonas Wortmann, Jisu Hong

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

High‐Efficiency Large‐Area Perovskite Solar Cells via a Multifunctional Crystallization Regulating Passivation Additive DOI
Junjie Zhou, Jiaying Lv,

Liguo Tan

и другие.

Advanced Materials, Год журнала: 2025, Номер unknown

Опубликована: Апрель 11, 2025

Abstract Film morphology and surface/interface defect density play a critical role in determining the efficiency stability of perovskite solar cells (PSCs). Here, chlorine‐substituted aromatic polycyclic derivative (BNCl) is reported, which shows strong interaction with both lead iodide dimethyl sulfoxide, to regulate crystallization perovskite, along effective passivation grain boundaries surface. In addition, extruded BNCl molecule at hole transport layer (HTL)/perovskite interface can facilitate transport, leading better charge transfer. As result, certified power conversion efficiencies (PCEs) 25.04% 22.81% are achieved for PSCs minimodules aperture areas 1 cm 2 12 respectively. device maintained 80% its initial after 2500 h maximum point (MPP) tracking under ISOS‐L‐1 standard.

Язык: Английский

Процитировано

0

Benzalkonium chloride assisted quenching-free fabrication of nonalloyed FAPbI3 perovskite films and solar cells DOI
Tian Hou, Xiaoran Sun,

Zhipeng Fu

и другие.

Chemical Engineering Journal, Год журнала: 2025, Номер unknown, С. 162771 - 162771

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

The rise of perovskite solar cells-based integrated photovoltaic energy conversion-storage systems DOI
Yajie Wang, Fei Zhang

Journal of Energy Chemistry, Год журнала: 2025, Номер unknown

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

High-efficiency and stable perovskite solar cells via bidentate chelation for facet-engineered growth of FAPbI3 (111) crystals DOI
Song Zhang, Yujie Zhou, Zhitao Shen

и другие.

Chemical Engineering Journal, Год журнала: 2025, Номер unknown, С. 164079 - 164079

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Machine learning-enabled optoelectronic material discovery: a comprehensive review DOI Open Access
Yu Shu, Naihua Miao,

R. J. Li

и другие.

Journal of Materials Informatics, Год журнала: 2025, Номер 5(3)

Опубликована: Май 28, 2025

The development of advanced optoelectronic materials constitutes a pivotal frontier in modern energy and communication technologies, facilitating critical energy-photon-electron interconversion processes that underpin sustainable infrastructures high-performance electronic devices. However, the discovery optimization novel face substantial hurdles arising from complicated structure-property interdependencies, prohibitive costs, protracted innovation cycles. Conventional empirical approaches computational simulations usually exhibit limited efficacy addressing escalating demands for with superior stability, economic viability, customizable properties. integration machine learning (ML) high-throughput screening has emerged as transformative strategy to address these challenges. By rapidly processing large multidimensional datasets predicting material properties such structure, thermodynamic charge transport behaviors, ML offers unprecedented capabilities efficient rational design materials. This review provides comprehensive overview cutting-edge ML-driven methodologies emphasis on workflows, data strategies, model frameworks. We also discuss challenges prospects applications, particularly standardization, interpretability closed-loop experimental validation. further propose potential artificial intelligence autonomous laboratories build powerful pipeline advance

Язык: Английский

Процитировано

0