Social Science & Medicine, Год журнала: 2020, Номер 260, С. 113172 - 113172
Опубликована: Июль 15, 2020
Язык: Английский
Social Science & Medicine, Год журнала: 2020, Номер 260, С. 113172 - 113172
Опубликована: Июль 15, 2020
Язык: Английский
Journal of Management Analytics, Год журнала: 2019, Номер 6(1), С. 1 - 29
Опубликована: Янв. 2, 2019
Artificial intelligence (AI) is one of the core drivers industrial development and a critical factor in promoting integration emerging technologies, such as graphic processing unit, Internet Things, cloud computing, blockchain, new generation big data Industry 4.0. In this paper, we construct an extensive survey over period 1961–2018 AI deep learning. The research provides valuable reference for researchers practitioners through multi-angle systematic analysis AI, from underlying mechanisms to practical applications, fundamental algorithms achievements, current status future trends. Although there exist many issues toward it undoubtful that has become innovative revolutionary assistant wide range applications fields.
Язык: Английский
Процитировано
475PLoS ONE, Год журнала: 2019, Номер 14(2), С. e0212356 - e0212356
Опубликована: Фев. 19, 2019
Health care organizations are leveraging machine-learning techniques, such as artificial neural networks (ANN), to improve delivery of at a reduced cost. Applications ANN diagnosis well-known; however, increasingly used inform health management decisions. We provide seminal review the applications organizational decision-making. screened 3,397 articles from six databases with coverage Administration, Computer Science and Business Administration. extracted study characteristics, aim, methodology context (including level analysis) 80 meeting inclusion criteria. Articles were published 1997–2018 originated 24 countries, plurality papers (26 articles) by authors United States. Types included (36 articles), feed-forward (25 or hybrid models (23 articles); reported accuracy varied 50% 100%. The majority informed decision-making micro (61 between patients providers. Fewer deployed for intra-organizational (meso- level, 29 system, policy inter-organizational (macro- 10 Our identifies key characteristics drivers market uptake guide further adoption this technique.
Язык: Английский
Процитировано
458Nature Communications, Год журнала: 2020, Номер 11(1)
Опубликована: Авг. 11, 2020
Machine learning promises to revolutionize clinical decision making and diagnosis. In medical diagnosis a doctor aims explain patient's symptoms by determining the diseases causing them. However, existing machine approaches are purely associative, identifying that strongly correlated with patients symptoms. We show this inability disentangle correlation from causation can result in sub-optimal or dangerous diagnoses. To overcome this, we reformulate as counterfactual inference task derive diagnostic algorithms. compare our algorithms standard associative algorithm 44 doctors using test set of vignettes. While achieves an accuracy placing top 48% cohort, places 25% doctors, achieving expert accuracy. Our results causal reasoning is vital missing ingredient for applying
Язык: Английский
Процитировано
453Automation in Construction, Год журнала: 2020, Номер 112, С. 103081 - 103081
Опубликована: Янв. 15, 2020
Язык: Английский
Процитировано
447Social Science & Medicine, Год журнала: 2020, Номер 260, С. 113172 - 113172
Опубликована: Июль 15, 2020
Язык: Английский
Процитировано
443