A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading DOI Creative Commons
Iulia Martina Bulai, Mattia Sensi, Sara Sottile

и другие.

arXiv (Cornell University), Год журнала: 2023, Номер unknown

Опубликована: Янв. 1, 2023

We propose a novel slow-fast SIRS compartmental model with demography, by coupling slow disease spreading and fast information misinformation model. Beside the classes of susceptible, infected recovered individuals common model, here we define three new related to e.g. unaware individuals, misinformed who are skeptical disease-related misinformation. Under our assumptions, system evolves on two time scales. completely characterize its asymptotic behaviour techniques Geometric Singular Perturbation Theory (GSPT). exploit scale separation analyse lower dimensional subsystem separately. First, focus analysis dynamics find equilibrium point which feasible stable under specific conditions. perform theoretical bifurcation understand relations between these equilibria when varying parameters system. Secondly, evolution variables identify branches critical manifold, described fully each branch. Moreover, show how inclusion (mis)information spread may negatively or positively affect epidemic, depending whether second branch skeptical-free third one, misinformed-free equilibrium, respectively. conclude numerical simulations showcase analytical results.

Язык: Английский

A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading DOI Creative Commons
Iulia Martina Bulai, Mattia Sensi, Sara Sottile

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 185, С. 115104 - 115104

Опубликована: Июнь 5, 2024

We propose a novel slow-fast SIRS compartmental model with demography, by coupling slow disease spreading and fast information misinformation model.Beside the classes of susceptible, infected recovered individuals common model, here we define three new related to e.g.unaware individuals, misinformed who are skeptical disease-related misinformation.Under our assumptions, system evolves on two time scales.We completely characterize its asymptotic behaviour techniques Geometric Singular Perturbation Theory (GSPT).We exploit scale separation analyse lower dimensional subsystem separately.First, focus analysis dynamics find equilibrium point which feasible stable under specific conditions.We perform theoretical bifurcation understand relations between these equilibria when varying parameters system.Secondly, evolution variables identify branches critical manifold, described system.We fully each branch.Moreover, show how inclusion (mis)information spread may negatively or positively affect epidemic, depending whether second branch skeptical-free third one, misinformed-free equilibrium, respectively.We conclude numerical simulations showcase analytical results.

Язык: Английский

Процитировано

3

A geometric analysis of the impact of large but finite switching rates on vaccination evolutionary games DOI Creative Commons
Rossella Della Marca, Alberto d’Onofrio, Mattia Sensi

и другие.

Nonlinear Analysis Real World Applications, Год журнала: 2023, Номер 75, С. 103986 - 103986

Опубликована: Авг. 17, 2023

In contemporary society, social networks accelerate decision dynamics causing a rapid switch of opinions in number fields, including the prevention infectious diseases by means vaccines. This that opinion can nowadays be much faster than spread epidemics. Hence, we propose Susceptible–Infectious–Removed epidemic model coupled with an evolutionary vaccination game embedding public health system efforts to increase vaccine uptake. results global "epidemic + game". The epidemiological novelty this work is assume switching strategy "pro vaccine" depends on incidence disease. As consequence above-mentioned accelerated decisions, acts two different scales: fast scale for decisions and slower Another, more methodological, element apply Geometrical Singular Perturbation Theory (GSPT) such two-scale then compare geometric analysis Quasi-Steady-State Approximation (QSSA) approach, showing criticality latter. Later, GSPT approach disease prevalence-based already studied (Della Marca d'Onofrio, Comm Nonl Sci Num Sim, 2021) via QSSA considering medium–large values parameter.

Язык: Английский

Процитировано

4

Global dynamics and numerical simulation of a modified epidemiological model for viral marketing on social networks DOI
Manh Tuan Hoang,

Hoai Thu Pham

Mathematics and Computers in Simulation, Год журнала: 2024, Номер 228, С. 225 - 244

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

1

Slow–fast dynamics in a neurotransmitter release model: Delayed response to a time-dependent input signal DOI
Mattia Sensi, Mathieu Desroches, Serafim Rodrigues

и другие.

Physica D Nonlinear Phenomena, Год журнала: 2023, Номер 455, С. 133887 - 133887

Опубликована: Авг. 11, 2023

Язык: Английский

Процитировано

3

Bifurcation analysis of a two-infection transmission model with explicit vector dynamics DOI Open Access
Akhil Kumar Srivastav, Vanessa Steindorf, Bruno V. Guerrero

и другие.

medRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Дек. 29, 2023

Abstract The investigation of epidemiological scenarios characterized by chaotic dynamics is crucial for understanding disease spread and improving control strategies. Motivated dengue fever epidemiology, in this study we introduce the SIRSIR-UV model, which accounts differences between primary secondary infections explicit vector dynamics. Our analysis, employing nonlinear bifurcation theory, provides key insights into how vectors contribute to overall system In paper, formalization backward using center manifold computation Hopf global homoclinic curves, derivation analytical expressions transcritical tangent bifurcations deepen understanding. observation behavior with inclusion seasonal forcing population underscores importance considering external factors like climate spread. findings align those from previous models, emphasizing significance simplifying assumptions, such as implicit dynamics, when constructing models without control. This brings significant mathematical modeling vector-borne diseases, providing a manageable framework exploring complex identifying influencing While absence strain structure may limit predictive power certain scenarios, model serves starting point infectious

Язык: Английский

Процитировано

1

Dynamics of an influenza epidemic model incorporating immune boosting and Ornstein–Uhlenbeck process DOI

Yiping Tan,

Ruoxia Yao

Chaos Solitons & Fractals, Год журнала: 2024, Номер 188, С. 115446 - 115446

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

0

A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading DOI Creative Commons
Iulia Martina Bulai, Mattia Sensi, Sara Sottile

и другие.

arXiv (Cornell University), Год журнала: 2023, Номер unknown

Опубликована: Янв. 1, 2023

We propose a novel slow-fast SIRS compartmental model with demography, by coupling slow disease spreading and fast information misinformation model. Beside the classes of susceptible, infected recovered individuals common model, here we define three new related to e.g. unaware individuals, misinformed who are skeptical disease-related misinformation. Under our assumptions, system evolves on two time scales. completely characterize its asymptotic behaviour techniques Geometric Singular Perturbation Theory (GSPT). exploit scale separation analyse lower dimensional subsystem separately. First, focus analysis dynamics find equilibrium point which feasible stable under specific conditions. perform theoretical bifurcation understand relations between these equilibria when varying parameters system. Secondly, evolution variables identify branches critical manifold, described fully each branch. Moreover, show how inclusion (mis)information spread may negatively or positively affect epidemic, depending whether second branch skeptical-free third one, misinformed-free equilibrium, respectively. conclude numerical simulations showcase analytical results.

Язык: Английский

Процитировано

0