Stability and convergence computational analysis of a new semi analytical-numerical method for fractional order linear inhomogeneous integro-partial-differential equations DOI
Javed Iqbal, Khurram Shabbir, Liliana Guran

и другие.

Physica Scripta, Год журнала: 2024, Номер 99(12), С. 125241 - 125241

Опубликована: Окт. 31, 2024

Abstract The aim of this research is to develop a semi-analytical numerical method for solving fractional order linear integro partial differential equations (FOLIPDEs), particularly focusing on inhomogeneous FOLIPDEs various types, such as versions Fredholm and Volterra type integral equations. To achieve goal, we will explore existing formulations model We then outline the proposed procedure, including an analysis its stability convergence properties. Through specific examples, demonstrate that approach not only clear efficient but also accurate. results obtained indicate holds significant potential addressing wide range FOLIPDEs. Finally, summarize contributions work advancement discuss directions future in area.

Язык: Английский

Modeling enteric fever transmission dynamics: a comparative analysis of local and nonlocal boundary value approaches DOI Creative Commons

Mideksa Tola Jiru,

Kassahun Getnet Mekonen

Boundary Value Problems, Год журнала: 2025, Номер 2025(1)

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

0

A comprehensive study of monkeypox disease through fractional mathematical modeling DOI Creative Commons

M. Manivel,

A. Venkatesh,

Shyamsunder Kumawat

и другие.

Mathematical Modelling and Numerical Simulation with Applications, Год журнала: 2025, Номер 5(1), С. 65 - 96

Опубликована: Март 31, 2025

This research investigates a fractional-order mathematical model for analyzing the dynamics of Monkeypox (Mpox) disease using Caputo-Fabrizio derivative. The incorporates both human and rodent populations, aiming to elucidate disease's transmission mechanics, which is demonstrated be more effective than integer-order models in capturing complex nature spread. study determines fundamental reproduction number ($R_{0}$) while assessing existence uniqueness solutions. Numerical simulations are conducted validate Adams-Bashforth technique illustrate influence different factors on progression disease. findings shed light Mpox control prevention, emphasizing importance fractional calculus epidemiological modeling.

Язык: Английский

Процитировано

0

A comparative analysis of vector-borne disease: monkeypox transmission outbreak DOI

Shyamsunder Kumawat,

M.C. Meena

Journal of Applied Mathematics and Computing, Год журнала: 2025, Номер unknown

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

0

Quantitative modeling of monkeypox viral transmission using Caputo fractional variational iteration method DOI Creative Commons

M. Manivel,

A. Venkatesh,

K. Arun Kumar

и другие.

Partial Differential Equations in Applied Mathematics, Год журнала: 2024, Номер unknown, С. 101026 - 101026

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

Stability and convergence computational analysis of a new semi analytical-numerical method for fractional order linear inhomogeneous integro-partial-differential equations DOI
Javed Iqbal, Khurram Shabbir, Liliana Guran

и другие.

Physica Scripta, Год журнала: 2024, Номер 99(12), С. 125241 - 125241

Опубликована: Окт. 31, 2024

Abstract The aim of this research is to develop a semi-analytical numerical method for solving fractional order linear integro partial differential equations (FOLIPDEs), particularly focusing on inhomogeneous FOLIPDEs various types, such as versions Fredholm and Volterra type integral equations. To achieve goal, we will explore existing formulations model We then outline the proposed procedure, including an analysis its stability convergence properties. Through specific examples, demonstrate that approach not only clear efficient but also accurate. results obtained indicate holds significant potential addressing wide range FOLIPDEs. Finally, summarize contributions work advancement discuss directions future in area.

Язык: Английский

Процитировано

0