Modeling enteric fever transmission dynamics: a comparative analysis of local and nonlocal boundary value approaches
Boundary Value Problems,
Год журнала:
2025,
Номер
2025(1)
Опубликована: Фев. 28, 2025
Язык: Английский
A comprehensive study of monkeypox disease through fractional mathematical modeling
M. Manivel,
A. Venkatesh,
Shyamsunder Kumawat
и другие.
Mathematical Modelling and Numerical Simulation with Applications,
Год журнала:
2025,
Номер
5(1), С. 65 - 96
Опубликована: Март 31, 2025
This
research
investigates
a
fractional-order
mathematical
model
for
analyzing
the
dynamics
of
Monkeypox
(Mpox)
disease
using
Caputo-Fabrizio
derivative.
The
incorporates
both
human
and
rodent
populations,
aiming
to
elucidate
disease's
transmission
mechanics,
which
is
demonstrated
be
more
effective
than
integer-order
models
in
capturing
complex
nature
spread.
study
determines
fundamental
reproduction
number
($R_{0}$)
while
assessing
existence
uniqueness
solutions.
Numerical
simulations
are
conducted
validate
Adams-Bashforth
technique
illustrate
influence
different
factors
on
progression
disease.
findings
shed
light
Mpox
control
prevention,
emphasizing
importance
fractional
calculus
epidemiological
modeling.
Язык: Английский
A comparative analysis of vector-borne disease: monkeypox transmission outbreak
Journal of Applied Mathematics and Computing,
Год журнала:
2025,
Номер
unknown
Опубликована: Апрель 17, 2025
Язык: Английский
Quantitative modeling of monkeypox viral transmission using Caputo fractional variational iteration method
M. Manivel,
A. Venkatesh,
K. Arun Kumar
и другие.
Partial Differential Equations in Applied Mathematics,
Год журнала:
2024,
Номер
unknown, С. 101026 - 101026
Опубликована: Дек. 1, 2024
Язык: Английский
Stability and convergence computational analysis of a new semi analytical-numerical method for fractional order linear inhomogeneous integro-partial-differential equations
Physica Scripta,
Год журнала:
2024,
Номер
99(12), С. 125241 - 125241
Опубликована: Окт. 31, 2024
Abstract
The
aim
of
this
research
is
to
develop
a
semi-analytical
numerical
method
for
solving
fractional
order
linear
integro
partial
differential
equations
(FOLIPDEs),
particularly
focusing
on
inhomogeneous
FOLIPDEs
various
types,
such
as
versions
Fredholm
and
Volterra
type
integral
equations.
To
achieve
goal,
we
will
explore
existing
formulations
model
We
then
outline
the
proposed
procedure,
including
an
analysis
its
stability
convergence
properties.
Through
specific
examples,
demonstrate
that
approach
not
only
clear
efficient
but
also
accurate.
results
obtained
indicate
holds
significant
potential
addressing
wide
range
FOLIPDEs.
Finally,
summarize
contributions
work
advancement
discuss
directions
future
in
area.
Язык: Английский