2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Год журнала: 2024, Номер unknown, С. 214 - 219
Опубликована: Окт. 21, 2024
Язык: Английский
2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Год журнала: 2024, Номер unknown, С. 214 - 219
Опубликована: Окт. 21, 2024
Язык: Английский
Опубликована: Сен. 22, 2024
Язык: Английский
Процитировано
4Robotics, Год журнала: 2025, Номер 14(3), С. 33 - 33
Опубликована: Март 13, 2025
This study presents an approach for developing digital avatars replicating individuals’ physical characteristics and communicative style, contributing to research on virtual interactions in the metaverse. The proposed method integrates large language models (LLMs) with 3D avatar creation techniques, using what we call Tree of Style (ToS) methodology generate stylistically consistent contextually appropriate responses. Linguistic analysis personalized voice synthesis enhance conversational auditory realism. results suggest that ToS offers a practical alternative fine-tuning creating accurate responses while maintaining efficiency. outlines potential applications acknowledges need further work adaptability ethical considerations.
Язык: Английский
Процитировано
0Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Journal of Computer Information Systems, Год журнала: 2025, Номер unknown, С. 1 - 29
Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 199 - 211
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 25, 2025
Student simulation supports educators to improve teaching by interacting with virtual students. However, most existing approaches ignore the modulation effects of course materials because two challenges: lack datasets granularly annotated materials, and limitation models in processing extremely long textual data. To solve challenges, we first run a 6-week education workshop from N = 60 students collect fine-grained data using custom built online system, which logs students' learning behaviors as they interact lecture over time. Second, propose transferable iterative reflection (TIR) module that augments both prompting-based finetuning-based large language (LLMs) for simulating behaviors. Our comprehensive experiments show TIR enables LLMs perform more accurate student than classical deep models, even limited demonstration approach better captures granular dynamism performance inter-student correlations classrooms, paving way towards ''digital twin'' education.
Язык: Английский
Процитировано
0Опубликована: Март 8, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0