
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 93, С. 910 - 924
Опубликована: Ноя. 6, 2024
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 93, С. 910 - 924
Опубликована: Ноя. 6, 2024
Язык: Английский
Nature Catalysis, Год журнала: 2024, Номер 7(5), С. 560 - 573
Опубликована: Апрель 23, 2024
Methanol synthesized from captured greenhouse gases is an emerging renewable feedstock with great potential for bioproduction. Recent research has raised the prospect of methanol bioconversion to value-added products using synthetic methylotrophic
Язык: Английский
Процитировано
28The Science of The Total Environment, Год журнала: 2024, Номер 946, С. 174349 - 174349
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
25Nature Communications, Год журнала: 2024, Номер 15(1)
Опубликована: Май 8, 2024
Abstract Phasing down fossil fuels is crucial for climate mitigation. Even though 80–90% of are used to provide energy, their use as feedstock produce plastics, fertilizers, and chemicals, associated with substantial CO 2 emissions. However, our understanding hard-to-abate chemical production remains limited. Here we developed a process-based material flow model investigate the non-energy emissions in China. Results show 2017, industry 0.18 Gt coal, 88.8 Mt crude oil, 12.9 natural gas feedstock, constituting 5%, 15%, 7% China’s respective total use. Coal-fed methanol, ammonia, PVCs contributes 0.27 ( ~ 3% emissions). As China seeks balance high coal-fed import dependence on oil gas, improving energy efficiency coupling green hydrogen emerges attractive alternatives decarbonization.
Язык: Английский
Процитировано
11Chemical Engineering Journal, Год журнала: 2024, Номер 489, С. 151181 - 151181
Опубликована: Апрель 10, 2024
Язык: Английский
Процитировано
10Nature Communications, Год журнала: 2025, Номер 16(1)
Опубликована: Фев. 1, 2025
Lignocellulose, an abundant renewable resource, presents a promising alternative for sustainable energy and industrial applications. However, large-scale adoption of lignocellulosic feedstocks faces considerable obstacles, including scalability, bioprocessing efficiency, resilience to climate change. This Review examines current efforts future opportunities leveraging in bio-based products, with focus on enhancing conversion efficiency scalability. It also explores emerging biotechnologies such as CRISPR-based genome editing informed by machine learning, aimed at improving feedstock traits reducing the environmental impact fossil fuel dependence. Lignocellulose is produce bioenergy biomaterials. Here, authors review efforts, feedstock-based biomaterials production provide outlook traits.
Язык: Английский
Процитировано
1Current Opinion in Chemical Engineering, Год журнала: 2025, Номер 48, С. 101118 - 101118
Опубликована: Март 11, 2025
Язык: Английский
Процитировано
1Electronics, Год журнала: 2024, Номер 13(16), С. 3338 - 3338
Опубликована: Авг. 22, 2024
Energy efficiency in production systems and processes is a key global research topic, especially light of the Green Deal, Industry 4.0/5.0 paradigms, rising energy prices. Research on improving based artificial intelligence (AI) analysis brings promising solutions, digital transformation industry towards green slowly becoming reality. New planning rules, optimization use Industrial Internet Things (IIoT), industrial cyber-physical (ICPSs), effective data their with AI bring further opportunities for sustainable, energy-efficient production. The aim this study to systematically evaluate quantify results, trends, impact management AI-based demand forecasting. value includes broader which will reduce observed environmental economic problems areas reducing consumption, forecasting accuracy, efficiency. In addition, technologies creating sustainable environment, accuracy forecasts, including area electricity storage, increase. A emerging trend manufacturing optimize waste, increase sustainability. An innovative perspective that leverages AI’s ability accurately forecast allows manufacturers align consumption schedules, minimizing excess emissions. Advanced machine learning (ML) algorithms can integrate real-time from various sources, such as weather patterns market demand, improve accuracy. This supports both sustainability enable more dynamic responsive systems, paving way smarter, resilient processes. paper’s contribution goes beyond mere description, making analyses, comparisons, generalizations leading current literature, logical conclusions state-of-the-art, authors’ knowledge experience renewable energy, AI, mechatronics.
Язык: Английский
Процитировано
6Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 217, С. 115756 - 115756
Опубликована: Апрель 26, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2024, Номер 16(14), С. 6176 - 6176
Опубликована: Июль 19, 2024
In the quest for a sustainable future, energy-intensive industries (EIIs) stand at forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint, path to comprehensive remains elusive EU and national levels. This study scrutinises key sectors such as non-ferrous metals, steel, cement, lime, chemicals, fertilisers, ceramics, glass. It maps out current environmental impact potential mitigation through innovative strategies. The analysis spans across Spain, Greece, Germany, Netherlands, highlighting sector-specific ecosystems technological breakthroughs shaping them. addresses urgency industry-wide adoption electrification, utilisation green hydrogen, biomass, bio-based or synthetic fuels, deployment carbon capture storage ensure smooth transition. Investment decisions in EIIs will depend on predictable economic regulatory landscapes. discusses risks associated with continued investment high-emission technologies, which may lead premature decommissioning repercussions. presents dichotomy: invest climate-neutral technologies now face closure offshoring operations later, consequences employment. open discussion concludes that while technology near-complete climate neutrality exists is rapidly advancing, higher costs compared conventional methods pose barrier. Without ability pass these consumers, stifled. Therefore, it calls decisive political commitment support industry’s transition, ensuring greener, more resilient future industrial backbone.
Язык: Английский
Процитировано
2Chemical Engineering Science, Год журнала: 2024, Номер unknown, С. 120804 - 120804
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
2