
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Март 14, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Март 14, 2024
Язык: Английский
Journal of Magnetic Resonance Imaging, Год журнала: 2024, Номер unknown
Опубликована: Май 10, 2024
Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features classifying three levels, first distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, 185 HER2‐positive. For Task‐1, 488 cases training 133 testing. Task‐2, 294 82 Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, single‐shot EPI DWI. Assessment Pathological information were compared. Random Forest was used select features, four machine learning (ML) algorithms: decision tree (DT), support vector (SVM), k ‐nearest neighbors ( ‐NN), artificial neural nets (ANN), applied build models. Statistical Tests Chi‐square test, one‐way analysis variance, Kruskal–Wallis test performed. The P values <0.05 statistically significant. ML models, the generated probability construct ROC curves. Results Peritumoral edema, presence multiple lesions non‐mass enhancement (NME) showed significant differences. distinguishing non‐zero (low + positive), lesions, margin, tumor size selected, ‐NN model achieved highest AUC 0.86 in set 0.79 testing set. differentiating HER2‐positive, margin DT 0.69 Data Conclusion read by radiologists preoperative can analyzed using more sophisticated feature selection algorithms models classification status identify HER2‐low. Level Evidence 4. Technical Efficacy Stage 2.
Язык: Английский
Процитировано
1Technology in Cancer Research & Treatment, Год журнала: 2024, Номер 23
Опубликована: Янв. 1, 2024
Purpose To assess whether gray-scale ultrasound (US) based radiomic features can help distinguish HER2 expressions (ie, HER2-overexpressing, HER2-low-expressing, and HER2-zero-expressing) in breast cancer. Materials Methods This retrospective study encompassed female cancer patients who underwent US examinations at two distinct centers from February 2021 to July 2023. Tumor segmentation feature extraction were performed on grayscale images. Decision Tree analysis was employed simultaneously evaluate importance, the Least Absolute Shrinkage Selection Operator technique utilized for selection construct signature. The Area Under Curve (AUC) of Receiver Operating Characteristic curve performance features. Multivariate logistic regression used identify independent predictors distinguishing expression dataset. Results training set comprised 292 Center 1 (median, 51 years; interquartile range [IQR]: 45-61), while external validation included 131 2 IQR: 45-62). In dataset, achieved AUC 0.76 between HER2-low positive tumors versus HER2-zero tumors. differentiating (1+) 0.74, (2+) tumors, 0.77. multivariate assessing HER2-positive internal echoes (P = .029) margins < .001) emerged as predictive factors. Conclusion signature tumor descriptors may predict cancers with therapeutic implications.
Язык: Английский
Процитировано
1Breast Cancer Targets and Therapy, Год журнала: 2024, Номер Volume 16, С. 957 - 972
Опубликована: Дек. 1, 2024
Core biopsy sampling may not fully capture tumor heterogeneity. Radiomics provides a non-invasive method to assess characteristics, including both the core and surrounding tissue, with potential improve accuracy of HER-2 status prediction.
Язык: Английский
Процитировано
1Clinical Radiology, Год журнала: 2022, Номер 78(3), С. e279 - e287
Опубликована: Дек. 26, 2022
Язык: Английский
Процитировано
6Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Март 14, 2024
Язык: Английский
Процитировано
0