Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Июнь 5, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Июнь 5, 2025
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 135123 - 135123
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Alexandria Engineering Journal, Год журнала: 2025, Номер 119, С. 246 - 258
Опубликована: Фев. 5, 2025
Язык: Английский
Процитировано
2Biomolecules, Год журнала: 2025, Номер 15(1), С. 81 - 81
Опубликована: Янв. 8, 2025
Cancer's heterogeneity presents significant challenges in accurate diagnosis and effective treatment, including the complexity of identifying tumor subtypes their diverse biological behaviors. This review examines how feature selection techniques address these by improving interpretability performance machine learning (ML) models high-dimensional datasets. Feature methods-such as filter, wrapper, embedded techniques-play a critical role enhancing precision cancer diagnostics relevant biomarkers. The integration multi-omics data ML algorithms facilitates more comprehensive understanding heterogeneity, advancing both personalized therapies. However, such ensuring quality, mitigating overfitting, addressing scalability remain limitations methods. Artificial intelligence (AI)-powered offers promising solutions to issues automating refining extraction process. highlights transformative potential approaches while emphasizing future directions, incorporation deep (DL) integrative strategies for robust reproducible findings.
Язык: Английский
Процитировано
1Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110566 - 110566
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Ноя. 18, 2024
Abstract Non-specific shoulder pain is a common musculoskeletal condition, especially among college students, and it can have negative impact on the patient’s life. Therapists used scapular stabilization exercises (SSE) to enhance control mobility. This study investigates prediction of stability in treating non-specific pain, leveraging advanced machine learning techniques for comprehensive evaluation analysis. Using diverse range regression models, including Gamma Regressor, Tweedie Poisson others, examines relationship between effectiveness various their management. Furthermore, employs optimization techniques, such as Hyperopt, scikit-optimize, optunity, GPyOpt, Optuna, fine-tune exercise protocols optimal outcomes. The results reveal that exercises, when optimized using algorithms, significantly contribute reducing students. Among scikit-optimize demonstrated best performance, resulting mean squared error 0.0085, absolute 0.0712, an impressive R2 score 0.8501. indicates approach yielded most accurate predictions effectively captured findings highlight critical role interventions ameliorating underscore potential optimizing therapeutic strategies health utilization particular, showcases its fine-tuning study’s serve crucial stepping stone developing personalized rehabilitation programs emphasizing importance integrating methodologies assessment treatment disorders
Язык: Английский
Процитировано
4International Journal of Fuzzy Systems, Год журнала: 2025, Номер unknown
Опубликована: Фев. 19, 2025
Язык: Английский
Процитировано
0Engineering Reports, Год журнала: 2025, Номер 7(3)
Опубликована: Март 1, 2025
ABSTRACT This study introduces an enhanced Siamese convolutional neural network (Siamese CNN) architecture with a novel StacLoss function and self‐attention modules for efficient identification of audio deepfakes. Our module directly compares unprocessed original modified by initially applying operations dual branches to extract complex characteristics from raw signals. These are followed residual connections, which enhance the network's performance. The trained in layered way alongside these fundamental layers detect multi‐headed attention within frames. output represents customized version contrastive loss function. It aids distinguishing between audios minimizing pairs that have same identity while maximizing distance manipulated samples enhances process extracting features compared standard techniques. efficacy method has been verified examining range modifications, its resilience thoroughly assessed on ASVspoof2019 dataset comprehensive testing across all possible manipulation situations. proposed (CNN) outperformed both machine deep learning models, achieving impressive metrics. achieved remarkable accuracy 98%, precision 97%, recall 96%, F 1 score 96.5%, ROC‐AUC 99%, equal error rate (EER) 2.95%.
Язык: Английский
Процитировано
0Array, Год журнала: 2025, Номер unknown, С. 100390 - 100390
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0International Journal of Fuzzy Systems, Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0International Journal of Fuzzy Systems, Год журнала: 2025, Номер unknown
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0