International Journal of Biological Macromolecules, Год журнала: 2025, Номер unknown, С. 144881 - 144881
Опубликована: Июнь 1, 2025
Язык: Английский
International Journal of Biological Macromolecules, Год журнала: 2025, Номер unknown, С. 144881 - 144881
Опубликована: Июнь 1, 2025
Язык: Английский
Viruses, Год журнала: 2025, Номер 17(4), С. 580 - 580
Опубликована: Апрель 17, 2025
Pseudorabies virus (PRV) is a pathogen that causes severe neurological dysfunction in the host, leading to extensive neuronal damage and inflammation. Despite research on neuropathogenesis of α-herpesvirus infections, many scientific questions remain unresolved, such as largely unknown functions long non-coding RNAs (lncRNAs) herpesvirus-infected nervous systems. To address these questions, we used RNA sequencing (RNA-seq) investigate expression profiles lncRNAs mRNAs brains mice infected with PRV. Through bioinformatic analysis, identified 316 differentially expressed 886 mRNAs. We predicted biological using Gene Ontology (GO) Kyoto Encyclopedia Genes Genomes (KEGG) databases, results showed transcripts were mainly involved innate immune response. Finally, validated differential trends quantitative real-time PCR (q-PCR), which consistent data. our knowledge, this first report analyzing lncRNA profile central system (CNS) Our findings provide new insights into roles during PRV infection host CNS.
Язык: Английский
Процитировано
0Carbohydrate Polymers, Год журнала: 2025, Номер 362, С. 123702 - 123702
Опубликована: Май 5, 2025
Язык: Английский
Процитировано
0Life, Год журнала: 2025, Номер 15(5), С. 745 - 745
Опубликована: Май 6, 2025
The integration of artificial intelligence and personalized medicine is transforming HIV management by enhancing diagnostics, treatment optimization, disease monitoring. Advances in machine learning, deep neural networks, multi-omics data analysis enable precise prognostication, tailored antiretroviral therapy, early detection drug resistance. AI-driven models analyze vast genomic, proteomic, clinical datasets to refine strategies, predict progression, pre-empt therapy failures. Additionally, AI-powered diagnostic tools, including learning imaging natural language processing, improve screening accuracy, particularly resource-limited settings. Despite these innovations, challenges such as privacy, algorithmic bias, the need for validation remain. Successful AI into care requires robust regulatory frameworks, interdisciplinary collaboration, equitable technology access. This review explores both potential limitations management, emphasizing ethical implementation expanded research maximize its impact. approaches hold great promise a more personalized, efficient, effective future care.
Язык: Английский
Процитировано
0International Journal of Biological Macromolecules, Год журнала: 2025, Номер unknown, С. 144881 - 144881
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0