Hallmarks of artificial intelligence contributions to precision oncology DOI
Tiangen Chang, Seongyong Park, Alejandro A. Schäffer

и другие.

Nature Cancer, Год журнала: 2025, Номер unknown

Опубликована: Март 7, 2025

Язык: Английский

The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools DOI Creative Commons
Gavino Faa, Massimo Castagnola, Luca Didaci

и другие.

Algorithms, Год журнала: 2024, Номер 17(6), С. 254 - 254

Опубликована: Июнь 10, 2024

The introduction of machine learning in digital pathology has deeply impacted the field, especially with advent whole slide image (WSI) analysis. In this review, we tried to elucidate role algorithms diagnostic precision, efficiency, and reproducibility results. First, discuss some most used tools, including QuPath, HistoQC, HistomicsTK, provide an updated overview approaches their application pathology. Later, report how these tools may simplify automation WSI analyses, also reducing manual workload inter-observer variability. A novel aspect review is its focus on open-source presented a way that help adoption process for pathologists. Furthermore, highlight major benefits technologies, aim making practical guide clinicians seeking implement learning-based solutions specific workflows. Moreover, emphasizes crucial limitations related data quality interpretability models, giving insight into future directions research. Overall, work tries bridge gap between more recent technological progress computer science traditional clinical practice, supporting broader, yet smooth,

Язык: Английский

Процитировано

5

A phase II trial of mTORC1/2 inhibition in STK11 deficient non small cell lung cancer DOI Creative Commons
Gary Middleton,

Helen L. Robbins,

Peter Fletcher

и другие.

npj Precision Oncology, Год журнала: 2025, Номер 9(1)

Опубликована: Март 11, 2025

Abstract There are no current stratified medicine options for STK11-deficient NSCLC. STK11 loss mediates mTORC activation, GLUT1 up-regulation and increased glycolysis. This metabolic reprogramming might represent a therapeutic vulnerability targetable with mTORC1/2 inhibition. In arm B2 of the National Lung Matrix Trial 54 patients NSCLC received vistusertib, which 49 were (30 KRAS mutation (B2D), 19 without (B2S)). Objective response (OR) durable clinical benefit (DCB) rates 95% credible intervals (CrI) estimated from posterior probability distributions generated using Bayesian beta-binomial conjugate analysis. B2D, 2 per-protocol obtained OR (estimated true rate (95%CrI) 9.8% (2.4–24.3). Estimates DCB (95%CrI): B2D 24.4% (11.1–42.3), B2S 14.6% (3.6–34.7). Overall, vistusertib cannot be recommended in this context. Longitudinal ctDNA analysis demonstrates enrichment SMARCA4 mutations post-treatment. vitro studies show adaptive resistance to inhibition via AKT reactivation. (NCT02664935, ISRCTN38344105, EudraCT 2014-000814-73, 10 June 2015)

Язык: Английский

Процитировано

0

New insights into cancer immune checkpoints landscape from single-cell RNA sequencing DOI
Qian Wang, Jiahui He, Tianyu Lei

и другие.

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Год журнала: 2025, Номер 1880(3), С. 189298 - 189298

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

Preclinical Models of Solid Cancers for Testing Cancer Immunotherapies DOI
F. Navarro Expósito, Kelli A. Connolly, Tang Tang

и другие.

Annual Review of Cancer Biology, Год журнала: 2025, Номер 9(1), С. 285 - 305

Опубликована: Апрель 11, 2025

Preclinical models have played a pivotal role in the development of immunotherapies that now become standard treatment option for numerous cancer types. This review examines strengths and weaknesses various mouse advancing our understanding immunology responses to immunotherapy. Furthermore, we explore how emerging technologies such as humanized models, integration CRISPR/Cas9 systems, advanced vitro systems are helping us deepen insights into cancer–immune interactions dictate response therapies. Integrating these diverse with cutting-edge genetic genomic tools will be crucial tackle challenges immunotherapy resistance design next generation drugs.

Язык: Английский

Процитировано

0

Short-term intra- and peri-tumoral spatiotemporal CT radiomics for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer DOI
Xiao Bao, Peng Qin, Dongliang Bian

и другие.

European Radiology, Год журнала: 2025, Номер unknown

Опубликована: Апрель 11, 2025

Язык: Английский

Процитировано

0

Immune escape mechanism in lung adenocarcinoma DOI Creative Commons

Xuanhui Mao,

Yong Yang, Rong Fu

и другие.

Chinese Medical Journal, Год журнала: 2025, Номер unknown

Опубликована: Апрель 10, 2025

Процитировано

0

Dysregulation of peripheral and intratumoral KLRG1+ CD8+ T cells is associated with immune evasion in patients with non-small-cell lung cancer DOI Creative Commons
Juan Zeng, Lu Zhang,

Shiqi Ma

и другие.

Translational Oncology, Год журнала: 2024, Номер 45, С. 101968 - 101968

Опубликована: Май 7, 2024

Killer cell lectin like receptor G1 (KLRG1) is identified as a co-inhibitory for NK cells and antigen-experienced T cells. The role of KLRG1 in immune regulation patients with non-small lung cancer (NSCLC) remains poorly understood.

Язык: Английский

Процитировано

4

Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology. DOI Creative Commons
Haoyang Mi, Shamilene Sivagnanam, Won Jin Ho

и другие.

Briefings in Bioinformatics, Год журнала: 2024, Номер 25(5)

Опубликована: Июль 25, 2024

Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of data with unparalleled spatial resolution. This type collection, namely, proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms evolved manage the increasing dimensionality proteomics inherent this progress. Numerous imaging-based frameworks, such as pathology, been proposed for research and clinical applications. However, development these fields demands diverse domain expertise, creating barriers their integration further application. review seeks bridge divide by presenting a comprehensive guideline. We consolidate prevailing methods outline roadmap from image processing data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives field moves toward interfacing other quantitative domains, holding significant promise precision care immuno-oncology.

Язык: Английский

Процитировано

4

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism DOI Creative Commons

Jiejing Kai,

Xueling Liu,

Meijia Wu

и другие.

Personalized Medicine, Год журнала: 2025, Номер unknown, С. 1 - 14

Опубликована: Янв. 7, 2025

Efforts have been made to leverage technology accurately identify tumor characteristics and predict how each cancer patient may respond medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation fluorescence in situ hybridization, immunohistochemistry staining, patient-derived xenograft models, organoid therapeutic monitoring. The utilization of diverse detection technologies clinical practice has "individualized treatment" possible, but the desired level accuracy not fully attained yet. Here, we briefly summarize conventional state-of-the-art contributing individualized medication settings, aiming explore therapy options enhancing outcomes.

Язык: Английский

Процитировано

0

Impact of co-mutations and transcriptional signatures in non-small cell lung cancer patients treated with adagrasib in the KRYSTAL-1 trial DOI Creative Commons
Marcelo V. Negrão, Alvaro G. Paula, David Molkentine

и другие.

Clinical Cancer Research, Год журнала: 2025, Номер unknown

Опубликована: Янв. 13, 2025

Abstract Background: KRAS inhibitors are revolutionizing the treatment of NSCLC, but clinico-genomic determinants efficacy warrant continued exploration. Methods: Patients with advanced KRASG12C-mutant NSCLC treated adagrasib (KRYSTAL-1-NCT03785249) were included in analysis. Pre-treatment NGS data collected per protocol. HTG EdgeSeq Transcriptome Panel was used for gene expression profiling. Clinical endpoints objective response, progression-free and overall survival. cell lines xenograft models sensitivity analyses combination drug screens. Results: KEAP1MUT STK11MUT associated shorter survival to (KEAP1: PFS 4.1m vs 9.9m, HR 2.7, p<0.01; OS 5.4m 19.0m, 3.6, STK11: 4.2m 11.0m, 2.2, 9.8m NR, 2.6, p<0.01). KEAP1WT/STK11WT status identified adagrasib-treated patients significantly longer (16.9m) (NR). Pre-clinical further validate association between KEAP1 loss-of-function resistance. Adagrasib mTOR inhibitor combinations produced higher harboring STK11 co-mutations. NRF2HIGH signaling (PFS: 8.4m, 2.0, p=0.02; OS: 6.5m 2.8, p<0.01) even KEAP1WTNSCLC patients. KEAP1WT/STK11WT/NRF2LOW - 32% (PFS 12.0m 4.2m, 0.2, NR 8.0m, 0.1, Conclusions: KEAP1, NRF2 define markedly distinct outcomes adagrasib. These results support use genomic features – mutational non-mutational selection

Язык: Английский

Процитировано

0