TTSDS - Text-to-Speech Distribution Score DOI

Christoph Minixhofer,

Ondřej Klejch, Peter Bell

и другие.

2022 IEEE Spoken Language Technology Workshop (SLT), Год журнала: 2024, Номер unknown, С. 766 - 773

Опубликована: Дек. 2, 2024

Язык: Английский

The acceptability and validity of AI-generated psycholinguistic stimuli DOI Creative Commons
Alaa Alzahrani

Heliyon, Год журнала: 2025, Номер 11(2), С. e42083 - e42083

Опубликована: Янв. 1, 2025

Sentence stimuli pervade psycholinguistics research. Yet, limited attention has been paid to the automatic construction of sentence stimuli. Given their linguistic capabilities, this study investigated efficacy ChatGPT in generating and AI tools producing auditory In three psycholinguistic experiments, examined acceptability validity AI-formulated sentences written one two languages: English Arabic. Experiment 1 3, participants gave AI-generated similar or higher ratings than human-composed 2, Arabic received lower counterparts. The AI-developed relied on design, with only 2 demonstrating target effect. These results highlight promising role as a developer, which could facilitate research increase its diversity. Implications for were discussed.

Язык: Английский

Процитировано

0

Interactive tools for making temporally variable, multiple-attributes, and multiple-instances morphing accessible: Flexible manipulation of divergent speech instances for explorational research and education DOI Open Access
Hideki Kawahara,

Masanori Morise

Nippon Onkyo Gakkaishi/Acoustical science and technology/Nihon Onkyo Gakkaishi, Год журнала: 2024, Номер unknown

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1

Multi-objective non-intrusive hearing-aid speech assessment model DOI
Hsin-Tien Chiang, Szu‐Wei Fu, Hsin‐Min Wang

и другие.

The Journal of the Acoustical Society of America, Год журнала: 2024, Номер 156(5), С. 3574 - 3587

Опубликована: Ноя. 1, 2024

Because a reference signal is often unavailable in real-world scenarios, reference-free speech quality and intelligibility assessment models are important for many processing applications. Despite great number of deep-learning that have been applied to build non-intrusive approaches achieve promising performance, studies focusing on the hearing impaired (HI) subjects limited. This paper presents HASA-Net+, multi-objective hearing-aid model, building upon our previous work, HASA-Net. HASA-Net+ improves HASA-Net several ways: (1) inclusivity both normal-hearing HI listeners, (2) integration with pre-trained foundation fine-tuning techniques, (3) expansion predictive capabilities cover diverse conditions, including noisy, denoised, reverberant, dereverberated, vocoded speech, thereby evaluating its robustness, (4) validation generalization capability using an out-of-domain dataset.

Язык: Английский

Процитировано

1

The Voicemos Challenge 2024: Beyond Speech Quality Prediction DOI
Wen-Chin Huang, Szu‐Wei Fu, Erica Cooper

и другие.

2022 IEEE Spoken Language Technology Workshop (SLT), Год журнала: 2024, Номер unknown, С. 803 - 810

Опубликована: Дек. 2, 2024

Язык: Английский

Процитировано

1

Refining the Evaluation of Speech Synthesis DOI

Olivier Perrotin,

Brooke Stephenson,

Silvain Gerber

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

EyetrackingMOS: Proposal for an online evaluation method for speech synthesis models DOI

Gustavo Araújo,

Julio Cesar Galdino, Rodrigo Lima

и другие.

Опубликована: Ноя. 17, 2024

Evaluating Text-To-Speech (TTS) systems is challenging, as the increasing quality of synthesis makes it difficult to discriminate models’ ability reproduce prosodic attributes, especially for Brazilian Portuguese. Offline evaluation metrics do not capture our genuine reactions audio stimuli. Therefore, we propose an online method using eye-tracking. Our experiments with 76 annotators show a reasonable correlation between EyetrackingMOS and MOS, well reduction in total time. We believe this metric provides precise potentially fast information complement existing methods.

Язык: Английский

Процитировано

0

Refining the evaluation of speech synthesis: A summary of the Blizzard Challenge 2023 DOI Creative Commons
Olivier Perrotin, Brooke Stephenson,

Silvain Gerber

и другие.

Computer Speech & Language, Год журнала: 2024, Номер 90, С. 101747 - 101747

Опубликована: Ноя. 8, 2024

Язык: Английский

Процитировано

0

TTSDS - Text-to-Speech Distribution Score DOI

Christoph Minixhofer,

Ondřej Klejch, Peter Bell

и другие.

2022 IEEE Spoken Language Technology Workshop (SLT), Год журнала: 2024, Номер unknown, С. 766 - 773

Опубликована: Дек. 2, 2024

Язык: Английский

Процитировано

0