Wavelet Estimation of Function Derivatives from a Multichannel Deconvolution Model DOI Creative Commons
Huijun Guo,

Shuzi Li

Journal of Function Spaces, Год журнала: 2022, Номер 2022, С. 1 - 11

Опубликована: Дек. 31, 2022

This paper considers a multichannel deconvolution model with Gaussian white noises. The goal is to estimate the d -th derivatives of an unknown function in model. For super-smooth case, we construct adaptive linear wavelet estimator by projection method. regular-smooth provide nonlinear hard-thresholded In order measure global performances our estimators, show upper bounds on convergence rates using L p -risk ( 1 p < ).

Язык: Английский

On the use of deep learning for phase recovery DOI Creative Commons
Kaiqiang Wang, Li Song, Chutian Wang

и другие.

Light Science & Applications, Год журнала: 2024, Номер 13(1)

Опубликована: Янв. 1, 2024

Phase recovery (PR) refers to calculating the phase of light field from its intensity measurements. As exemplified quantitative imaging and coherent diffraction adaptive optics, PR is essential for reconstructing refractive index distribution or topography an object correcting aberration system. In recent years, deep learning (DL), often implemented through neural networks, has provided unprecedented support computational imaging, leading more efficient solutions various problems. this review, we first briefly introduce conventional methods PR. Then, review how DL provides following three stages, namely, pre-processing, in-processing, post-processing. We also used in image processing. Finally, summarize work provide outlook on better use improve reliability efficiency Furthermore, present a live-updating resource ( https://github.com/kqwang/phase-recovery ) readers learn about

Язык: Английский

Процитировано

77

Deep learning assisted non-contact defect identification method using diffraction phase microscopy DOI

S. Narayan,

Allaparthi Venkata Satya Vithin, Rajshekhar Gannavarpu

и другие.

Applied Optics, Год журнала: 2023, Номер 62(20), С. 5433 - 5433

Опубликована: Июнь 20, 2023

Reliable detection of defects from optical fringe patterns is a crucial problem in non-destructive interferometric metrology. In this work, we propose deep-learning-based method for pattern defect identification. By attributing the information to pattern's phase gradient, compute spatial derivatives using deep learning model and apply gradient map localize defect. The robustness proposed illustrated on multiple numerically synthesized at various noise levels. Further, practical utility substantiated experimental identification diffraction microscopy.

Язык: Английский

Процитировано

9

Simultaneous estimation of multiple order phase derivatives using deep learning method in digital holographic interferometry DOI

S. Narayan,

Rajshekhar Gannavarpu

Optics and Lasers in Engineering, Год журнала: 2024, Номер 184, С. 108583 - 108583

Опубликована: Сен. 13, 2024

Язык: Английский

Процитировано

3

人工智能定量相位成像:从物理到算法再到物理(内封面文章·特邀) DOI

田璇 TIAN Xuan,

费舒全 FEI Shuquan,

李润泽 LI Runze

и другие.

Infrared and Laser Engineering, Год журнала: 2025, Номер 54(2), С. 20240490 - 20240490

Опубликована: Янв. 1, 2025

Процитировано

0

Correction of spurious phase sign in single closed-fringe demodulation using transformer based Swin-ResUnet DOI Open Access

Yu Kuang,

Fengwei Liu,

Yuanchao Liu

и другие.

Optics & Laser Technology, Год журнала: 2023, Номер 168, С. 109952 - 109952

Опубликована: Авг. 24, 2023

Язык: Английский

Процитировано

7

Deep learning based single shot multiple phase derivative retrieval method in multi-wave digital holographic interferometry DOI
Allaparthi Venkata Satya Vithin, Jagadesh Ramaiah, Rajshekhar Gannavarpu

и другие.

Optics and Lasers in Engineering, Год журнала: 2022, Номер 162, С. 107442 - 107442

Опубликована: Дек. 22, 2022

Язык: Английский

Процитировано

11

Fringe pattern normalization using conditional Generative Adversarial Networks DOI

Viren S Ram,

Rajshekhar Gannavarpu

Optik, Год журнала: 2024, Номер 313, С. 171999 - 171999

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

2

Deep learning assisted state space method for phase derivative estimation in digital holographic interferometry DOI Creative Commons
Dhruvam Pandey, Rajshekhar Gannavarpu

Optics Continuum, Год журнала: 2024, Номер 3(9), С. 1765 - 1765

Опубликована: Сен. 4, 2024

In digital holographic interferometry, the measurement of derivatives interference phase plays a crucial role in deformation testing since displacement corresponding to deformed object are directly related derivatives. this work, we propose recurrent neural network-assisted state space method for reliable estimation The proposed offers high robustness against severe noise and corrupted fringe data regions, its performance is validated via numerical simulations. We also corroborate practical applicability by analyzing experimental test objects interferometry.

Язык: Английский

Процитировано

2

Quantitative phase gradient metrology using diffraction phase microscopy and deep learning DOI
Allaparthi Venkata Satya Vithin, Rajshekhar Gannavarpu

Journal of the Optical Society of America A, Год журнала: 2023, Номер 40(3), С. 611 - 611

Опубликована: Янв. 31, 2023

In quantitative phase microscopy, measurement of the gradient is an important problem for biological cell morphological studies. this paper, we propose a method based on deep learning approach that capable direct estimation without requirement unwrapping and numerical differentiation operations. We show robustness proposed using simulations under severe noise conditions. Further, demonstrate method's utility imaging different cells diffraction microscopy setup.

Язык: Английский

Процитировано

5

Central difference information filtering phase unwrapping algorithm based on deep learning DOI
Jiaying Li, Xianming Xie

Optics and Lasers in Engineering, Год журнала: 2023, Номер 163, С. 107484 - 107484

Опубликована: Янв. 23, 2023

Язык: Английский

Процитировано

4