A multidisciplinary approach towards modeling of a virtual human lung DOI Creative Commons

Timothy T.-Y. Lam,

Henry Quach,

Linda Hall

и другие.

npj Systems Biology and Applications, Год журнала: 2025, Номер 11(1)

Опубликована: Апрель 18, 2025

Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or "digital twins." These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable lacking reliable models. Here we review current modelling efforts lung development, highlighting role interdisciplinary collaboration key advances toward a digital twin.

Язык: Английский

Assembling multipath service function chains in substrate graphs using sharing instances and deep learning DOI

Zhanwei Chen,

Amin Rezaeipanah

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 152, С. 110900 - 110900

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0

Evolutionary algorithm- based sliding mode control of a photovoltaic/battery system DOI
Jafar Tavoosi, Saeed Danyali, Mohammadamin Shirkhani

и другие.

Electric Power Systems Research, Год журнала: 2025, Номер 246, С. 111717 - 111717

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0

Optimized Feature Selection and Deep Neural Networks to Improve Heart Disease Prediction DOI

Tan Chang-ming,

Zhe Yuan, Feng Xu

и другие.

Deleted Journal, Год журнала: 2025, Номер unknown

Опубликована: Апрель 16, 2025

Heart disease remains a significant health threat due to its high mortality rate and increasing prevalence. Early prediction using basic physical markers from routine exams is crucial for timely diagnosis intervention. However, manual analysis of large datasets can be labor-intensive error-prone. Our goal rapidly reliably anticipate cardiac variety body signs. This research presents unique model heart prediction. We provide system predicting that blends the deep convolutional neural network with feature selection technique based on LinearSVC. integrated method selects subset characteristics are strongly linked disease. feed these features into conventual we constructed. Also improve speed predictor avoid gradient varnishing or explosion, network's hyperparameters were tuned random search algorithm. The proposed was evaluated UCI MIT datasets. number indicators, such as accuracy, recall, precision, F1 score. results demonstrate our attains accuracy rates 98.16%, 98.2%, 95.38%, 97.84% in dataset, an average MCC score 90%. These affirm efficacy reliability predict

Язык: Английский

Процитировано

0

General models for predicting the liquid thermal conductivity of fatty acid esters based on smart methods DOI Creative Commons
Chou‐Yi Hsu,

Abu Khair Mohammad Mohsin,

R.L. Jhala

и другие.

Energy Conversion and Management X, Год журнала: 2025, Номер unknown, С. 101023 - 101023

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A multidisciplinary approach towards modeling of a virtual human lung DOI Creative Commons

Timothy T.-Y. Lam,

Henry Quach,

Linda Hall

и другие.

npj Systems Biology and Applications, Год журнала: 2025, Номер 11(1)

Опубликована: Апрель 18, 2025

Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or "digital twins." These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable lacking reliable models. Here we review current modelling efforts lung development, highlighting role interdisciplinary collaboration key advances toward a digital twin.

Язык: Английский

Процитировано

0