Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
European Journal of Soil Science, Год журнала: 2025, Номер 76(1)
Опубликована: Янв. 1, 2025
ABSTRACT Recent advances in hardware technology have enabled the development of handheld sensors with comparable performance to laboratory‐grade near‐infrared (NIR) spectroradiometers. In this study, we explored effect uncertainty from NeoSpectra Scanner Handheld NIR Analyzer (Si‐Ware) on estimating farm‐level soil organic carbon (SOC) stocks at three small farms Massachusetts, USA. A field campaign conducted Falmouth, MA, collected 192 samples depths 0–10, 10–20 and 20–30 cm. All were scanned both moisture under laboratory conditions after being dried sieved. Samples analysed for SOC via elemental analysis, while bulk density was determined weighing dry fine earth sampled cylindrical cores field. Several strategies spectral prediction tested content (BD) using moist scans, including testing application prebuilt models Open Soil Spectral Library. Cubist used train all models, conformal estimate intervals one standard deviation. The Cholesky decomposition algorithm allowed us consider correlation between variables over depth layers during propagation Monte Carlo come up robust estimates field‐scale uncertainty. This analysis revealed that spectroscopy predictions, although less precise, can detect same statistical patterns stock across a large cost savings compared traditional analytical methods.
Язык: Английский
Процитировано
0Soil Advances, Год журнала: 2025, Номер 3, С. 100039 - 100039
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0