Asian Journal of Civil Engineering, Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Asian Journal of Civil Engineering, Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Авг. 12, 2024
This article investigates the behavior of hybrid FRP Concrete-Steel columns with an elliptical cross section. The investigation was carried out by gathering information through literature and conducting a parametric study, which resulted in 116 data points. Moreover, multiple machine learning predictive models were developed to accurately estimate confined ultimate strain load concrete at rupture tube. Decision Tree (DT), Random Forest (RF), Adaptive Boosting (ADAB), Categorical (CATB), eXtreme Gradient (XGB) techniques utilized for proposed models. Finally, these visually quantitatively verified evaluated. It concluded that CATB XGB are standout models, offering high accuracy strong generalization capabilities. model is slightly superior due its consistently lower error rates during testing, indicating it best this dataset when considering both robustness against overfitting.
Язык: Английский
Процитировано
31Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
3Asian Journal of Civil Engineering, Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
2