
F1000Research, Год журнала: 2025, Номер 14, С. 245 - 245
Опубликована: Март 28, 2025
Язык: Английский
F1000Research, Год журнала: 2025, Номер 14, С. 245 - 245
Опубликована: Март 28, 2025
Язык: Английский
Water, Год журнала: 2025, Номер 17(9), С. 1304 - 1304
Опубликована: Апрель 27, 2025
The present investigation utilized artificial neural networks (ANN) and gene expression programming (GEP) in comparison with the two-point method (TPM) to develop a generalized solution for predicting infiltrated water volume (∀Z) across various soil types under furrow conditions. This work assesses infiltration behavior respect experimental data from several temporal contexts. Data distribution model performance are evaluated via descriptive statistics correlation tests. Artificial intelligence (AI) models (ANN GEP) trained utilizing input variables—inflow rate (Qin); length (L); waterfront advance time at end of (TL); opportunity (To); cross-sectional area inflow (Ao) compared TPM performance. More precisely consistently than power function, AI-based algorithms hope be invading volume. Statistical analysis shows that ANN GEP have lower error metrics, increased generalizability, better representation complex dynamics. determination coefficient (R2) produced 98.1% testing 97.8% validation, while showed accuracy reductions 2.5% 4.6%, respectively. On other side, R2 95.7% 96.1% 0.7% 3%, During computation, TPMs root mean square (RMSE) 0.0135 m3/m exceeded all values. Errors within 10% relative deviation were displayed using ∀Z. Particularly, GEP, study revealed AI techniques predict irrigation penetration function. These adaptation, extrapolation, accuracy. Results show AI-driven modeling may maximize hydrological assessments control.
Язык: Английский
Процитировано
1F1000Research, Год журнала: 2025, Номер 14, С. 245 - 245
Опубликована: Март 28, 2025
Язык: Английский
Процитировано
0