Опубликована: Окт. 25, 2024
Язык: Английский
Опубликована: Окт. 25, 2024
Язык: Английский
ICC 2022 - IEEE International Conference on Communications, Год журнала: 2024, Номер unknown, С. 4614 - 4619
Опубликована: Июнь 9, 2024
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 127 - 144
Опубликована: Окт. 17, 2024
Язык: Английский
Процитировано
0Sustainable Energy Grids and Networks, Год журнала: 2024, Номер unknown, С. 101555 - 101555
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
0Entropy, Год журнала: 2024, Номер 26(12), С. 1081 - 1081
Опубликована: Дек. 11, 2024
Neural machine translation (NMT) systems have achieved outstanding performance and been widely deployed in the real world. However, undertranslation problem caused by distribution of high-translation-entropy words source sentences still exists, can be aggravated poisoning attacks. In this paper, we propose a new backdoor attack on NMT models small fraction parallel training data. Our increases entropy after injecting trigger, making them more easily discarded NMT. The final is part target translation, position injected trigger poison affects scope truncation. Moreover, also defense method, Backdoor Defense Sematic Representation Change (BDSRC), against our attack. Specifically, selected candidates based similarity between semantic representation sentence overall representation. Then, identified through computing deviation candidates. experiments show that strategy achieve nearly 100% success rate, functionality main tasks almost unaffected having degradation less than 1 BLEU. Nonetheless, method effectively identify triggers alleviate degradation.
Язык: Английский
Процитировано
0Опубликована: Окт. 25, 2024
Язык: Английский
Процитировано
0