Large language models in patient education: a scoping review of applications in medicine
Frontiers in Medicine,
Год журнала:
2024,
Номер
11
Опубликована: Окт. 29, 2024
Large
Language
Models
(LLMs)
are
sophisticated
algorithms
that
analyze
and
generate
vast
amounts
of
textual
data,
mimicking
human
communication.
Notable
LLMs
include
GPT-4o
by
Open
AI,
Claude
3.5
Sonnet
Anthropic,
Gemini
Google.
This
scoping
review
aims
to
synthesize
the
current
applications
potential
uses
in
patient
education
engagement.
Язык: Английский
Through ChatGPT’s Eyes: The Large Language Model’s Stereotypes and what They Reveal About Healthcare
Journal of Medical Systems,
Год журнала:
2025,
Номер
49(1)
Опубликована: Фев. 5, 2025
Язык: Английский
Lights and shadows of artificial intelligence in laboratory medicine
Advances in Laboratory Medicine / Avances en Medicina de Laboratorio,
Год журнала:
2025,
Номер
6(1), С. 1 - 3
Опубликована: Фев. 24, 2025
Язык: Английский
Luces y sombras de la inteligencia artificial en la medicina de laboratorio
Advances in Laboratory Medicine / Avances en Medicina de Laboratorio,
Год журнала:
2025,
Номер
6(1), С. 4 - 6
Опубликована: Март 1, 2025
Comparing Large Language Models for antibiotic prescribing in different clinical scenarios: which perform better?
Clinical Microbiology and Infection,
Год журнала:
2025,
Номер
unknown
Опубликована: Март 1, 2025
Язык: Английский
Generative artificial intelligence (AI) for reporting the performance of laboratory biomarkers: not ready for prime time
Clinical Chemistry and Laboratory Medicine (CCLM),
Год журнала:
2024,
Номер
unknown
Опубликована: Июль 30, 2024
Язык: Английский
Innovations in Introductory Programming Education: The Role of AI with Google Colab and Gemini
Education Sciences,
Год журнала:
2024,
Номер
14(12), С. 1330 - 1330
Опубликована: Дек. 4, 2024
This
study
explores
the
impact
of
artificial
intelligence
on
teaching
programming,
focusing
GenAI
Gemini
tool
in
Google
Colab.
It
evaluates
how
this
technology
influences
comprehension
fundamental
concepts,
processes,
and
effective
practices.
In
research,
students’
motivation,
interest,
satisfaction
are
determined,
as
well
fulfillment
surpassing
their
learning
expectations.
With
a
quantitative
approach
quasi-experimental
design,
an
investigation
was
carried
out
seven
programming
groups
polytechnic
university
Guayaquil,
Ecuador.
The
results
reveal
that
use
significantly
increases
interest
with
91%
respondents
expressing
increased
enthusiasm.
addition,
90%
feel
integration
meets
expectations,
it
has
exceeded
those
expectations
terms
educational
support.
evidences
value
integrating
advanced
technologies
into
education,
suggesting
can
transform
programming.
However,
successful
implementation
depends
timely
training
educators,
ethics
for
students,
ongoing
technology,
curriculum
design
maximizes
capabilities
GenAI.
Язык: Английский