Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender DOI
Stephen J. Fleming, Mark Chaffin, Alessandro Arduini

и другие.

Nature Methods, Год журнала: 2023, Номер 20(9), С. 1323 - 1335

Опубликована: Авг. 7, 2023

Язык: Английский

Current best practices in single‐cell RNA‐seq analysis: a tutorial DOI Creative Commons
Malte D. Luecken, Fabian J. Theis

Molecular Systems Biology, Год журнала: 2019, Номер 15(6)

Опубликована: Июнь 1, 2019

Single-cell RNA-seq has enabled gene expression to be studied at an unprecedented resolution. The promise of this technology is attracting a growing user base for single-cell analysis methods. As more tools are becoming available, it increasingly difficult navigate landscape and produce up-to-date workflow analyse one's data. Here, we detail the steps typical analysis, including pre-processing (quality control, normalization, data correction, feature selection, dimensionality reduction) cell- gene-level downstream analysis. We formulate current best-practice recommendations these based on independent comparison studies. have integrated into workflow, which apply public dataset further illustrate how work in practice. Our documented case study can found https://www.github.com/theislab/single-cell-tutorial This review will serve as tutorial new entrants field, help established users update their pipelines.

Язык: Английский

Процитировано

1748

Cells of the adult human heart DOI Creative Commons
Monika Litviňuková, Carlos Talavera‐López, Henrike Maatz

и другие.

Nature, Год журнала: 2020, Номер 588(7838), С. 466 - 472

Опубликована: Сен. 24, 2020

Abstract Cardiovascular disease is the leading cause of death worldwide. Advanced insights into mechanisms and therapeutic strategies require a deeper understanding molecular processes involved in healthy heart. Knowledge full repertoire cardiac cells their gene expression profiles fundamental first step this endeavour. Here, using state-of-the-art analyses large-scale single-cell single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight cellular heterogeneity cardiomyocytes, pericytes fibroblasts, reveal distinct atrial ventricular subsets with diverse developmental origins specialized properties. We define complexity vasculature its changes along arterio-venous axis. In immune compartment, identify cardiac-resident macrophages inflammatory protective transcriptional signatures. Furthermore, cell-to-cell interactions different networks macrophages, fibroblasts cardiomyocytes between atria ventricles that are from those skeletal muscle. human cell atlas improves our provides valuable reference for future studies.

Язык: Английский

Процитировано

1319

A single–cell type transcriptomics map of human tissues DOI Creative Commons
Max Karlsson, Cheng Zhang, Loren Méar

и другие.

Science Advances, Год журнала: 2021, Номер 7(31)

Опубликована: Июль 28, 2021

Single-cell RNA analysis has been integrated with spatial protein profiling to create a single–cell type map of human tissues.

Язык: Английский

Процитировано

1181

Microglia states and nomenclature: A field at its crossroads DOI Creative Commons
Rosa Chiara Paolicelli, Amanda Sierra, Beth Stevens

и другие.

Neuron, Год журнала: 2022, Номер 110(21), С. 3458 - 3483

Опубликована: Ноя. 1, 2022

Язык: Английский

Процитировано

1103

SARS‐CoV‐2 receptorACE2 andTMPRSS2 are primarily expressed in bronchial transient secretory cells DOI Creative Commons
Soeren Lukassen, Robert Lorenz Chua, Timo B. Trefzer

и другие.

The EMBO Journal, Год журнала: 2020, Номер 39(10)

Опубликована: Апрель 14, 2020

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection replication. was reported to enter cells via binding ACE2, followed by its priming TMPRSS2. Here, we investigate ACE2 TMPRSS2 expression levels their distribution across cell types in lung tissue (twelve donors, 39,778 cells) derived from subsegmental bronchial branches (four 17,521 single nuclei RNA sequencing, respectively. While is strongly expressed both tissues, predominantly a transient secretory type. Interestingly, these transiently differentiating show an enrichment pathways related RHO GTPase function viral processes suggesting increased vulnerability infection. Our data provide rich resource future investigations pathogenesis.

Язык: Английский

Процитировано

983

A scalable SCENIC workflow for single-cell gene regulatory network analysis DOI
Bram Van de Sande, Christopher Flerin, Kristofer Davie

и другие.

Nature Protocols, Год журнала: 2020, Номер 15(7), С. 2247 - 2276

Опубликована: Июнь 19, 2020

Язык: Английский

Процитировано

937

Deciphering cell–cell interactions and communication from gene expression DOI Open Access
Erick Armingol, Adam Officer, Olivier Harismendy

и другие.

Nature Reviews Genetics, Год журнала: 2020, Номер 22(2), С. 71 - 88

Опубликована: Ноя. 9, 2020

Язык: Английский

Процитировано

937

Benchmarking atlas-level data integration in single-cell genomics DOI Creative Commons
Malte D. Luecken, Maren Büttner, Kridsadakorn Chaichoompu

и другие.

Nature Methods, Год журнала: 2021, Номер 19(1), С. 41 - 50

Опубликована: Дек. 23, 2021

Abstract Single-cell atlases often include samples that span locations, laboratories and conditions, leading to complex, nested batch effects in data. Thus, joint analysis of atlas datasets requires reliable data integration. To guide integration method choice, we benchmarked 68 preprocessing combinations on 85 batches gene expression, chromatin accessibility simulation from 23 publications, altogether representing >1.2 million cells distributed 13 atlas-level tasks. We evaluated methods according scalability, usability their ability remove while retaining biological variation using 14 evaluation metrics. show highly variable selection improves the performance methods, whereas scaling pushes prioritize removal over conservation variation. Overall, scANVI, Scanorama, scVI scGen perform well, particularly complex tasks, single-cell ATAC-sequencing is strongly affected by choice feature space. Our freely available Python module benchmarking pipeline can identify optimal for new data, benchmark improve development.

Язык: Английский

Процитировано

824

Single‐cell RNA sequencing technologies and applications: A brief overview DOI

Dragomirka Jovic,

Xue Liang, Zeng Hua

и другие.

Clinical and Translational Medicine, Год журнала: 2022, Номер 12(3)

Опубликована: Март 1, 2022

Язык: Английский

Процитировано

709

Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics DOI
Sophia K. Longo, Margaret Guo, Andrew L. Ji

и другие.

Nature Reviews Genetics, Год журнала: 2021, Номер 22(10), С. 627 - 644

Опубликована: Июнь 18, 2021

Язык: Английский

Процитировано

682