2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Год журнала: 2024, Номер unknown, С. 24305 - 24315
Опубликована: Июнь 16, 2024
Язык: Английский
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Год журнала: 2024, Номер unknown, С. 24305 - 24315
Опубликована: Июнь 16, 2024
Язык: Английский
IEEE Transactions on Neural Networks and Learning Systems, Год журнала: 2022, Номер 35(1), С. 5 - 22
Опубликована: Июнь 22, 2022
Backdoor
attack
intends
to
embed
hidden
backdoors
into
deep
neural
networks
(DNNs),
so
that
the
attacked
models
perform
well
on
benign
samples,
whereas
their
predictions
will
be
maliciously
changed
if
backdoor
is
activated
by
attacker-specified
triggers.
This
threat
could
happen
when
training
process
not
fully
controlled,
such
as
third-party
datasets
or
adopting
models,
which
poses
a
new
and
realistic
threat.
Although
learning
an
emerging
rapidly
growing
research
area,
there
still
no
comprehensive
timely
review
of
it.
In
this
article,
we
present
first
survey
realm.
We
summarize
categorize
existing
attacks
defenses
based
characteristics,
provide
unified
framework
for
analyzing
poisoning-based
attacks.
Besides,
also
analyze
relation
between
relevant
fields
(i.e.,
adversarial
data
poisoning),
widely
adopted
benchmark
datasets.
Finally,
briefly
outline
certain
future
directions
relying
upon
reviewed
works.
A
curated
list
backdoor-related
resources
available
at
Язык: Английский
Процитировано
344IEEE Open Journal of the Computer Society, Год журнала: 2023, Номер 4, С. 280 - 302
Опубликована: Янв. 1, 2023
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in creation knowledge representation. AIGC uses generative AI algorithms to assist or replace humans creating massive, high-quality, human-like at faster pace lower cost, based on user-provided prompts. Despite recent significant progress AIGC, security, privacy, ethical, legal challenges still need be addressed. This paper presents an in-depth survey working principles, security privacy threats, state-of-the-art solutions, future paradigm. Specifically, we first explore enabling technologies, general architecture discuss its modes key characteristics. Then, investigate taxonomy threats highlight ethical societal implications GPT technologies. Furthermore, review watermarking approaches for regulatable paradigms regarding model produced content. Finally, identify open research directions related AIGC.
Язык: Английский
Процитировано
143IEEE Transactions on Information Forensics and Security, Год журнала: 2023, Номер 18, С. 2318 - 2332
Опубликована: Янв. 1, 2023
Deep
learning,
especially
deep
neural
networks
(DNNs),
has
been
widely
and
successfully
adopted
in
many
critical
applications
for
its
high
effectiveness
efficiency.
The
rapid
development
of
DNNs
benefited
from
the
existence
some
high-quality
datasets
(
Язык: Английский
Процитировано
32Security and Communication Networks, Год журнала: 2023, Номер 2023, С. 1 - 10
Опубликована: Июнь 10, 2023
Machine learning algorithms are at the forefront of development advanced information systems. The rapid progress in machine technology has enabled cutting-edge large language models (LLMs), represented by GPT-3 and ChatGPT, to perform a wide range NLP tasks with stunning performance. However, research on adversarial highlights need for these intelligent systems be more robust. Adversarial aims evaluate attack defense mechanisms prevent malicious exploitation In case induction prompt can cause model generate toxic texts that could pose serious security risks or propagate false information. To address this challenge, we first analyze effectiveness inducing attacks ChatGPT. Then, two effective mitigating proposed. is training-free prefix mechanism detect generation texts. second RoBERTa-based identifies manipulative misleading input text via external detection models. availability method demonstrated through experiments.
Язык: Английский
Процитировано
30IEEE Transactions on Pattern Analysis and Machine Intelligence, Год журнала: 2024, Номер 46(10), С. 6985 - 6992
Опубликована: Март 25, 2024
The intellectual property of deep networks can be easily "stolen" by surrogate model attack. There has been significant progress in protecting the IP classification tasks. However, little attention devoted to protection image processing models. By utilizing consistent invisible spatial watermarks, work [1] first considered watermarking for and demonstrated its efficacy many downstream Its success depends on hypothesis that if a watermark exists all prediction outputs, will learned into attacker's model. when attacker uses common data augmentation attacks (e.g., rotate, crop, resize) during training, it fail because underlying consistency is destroyed. To mitigate this issue, we propose new methodology, "structure consistency", based which structure-aligned algorithm designed. Specifically, embedded watermarks are designed aligned with physically structures, such as edges or semantic regions. Experiments demonstrate our method more robust than baseline resisting attacks. Besides that, test generalization ability robustness broader range adaptive
Язык: Английский
Процитировано
72022 IEEE Symposium on Security and Privacy (SP), Год журнала: 2024, Номер 2, С. 2515 - 2533
Опубликована: Май 19, 2024
Язык: Английский
Процитировано
5Neural Computing and Applications, Год журнала: 2024, Номер 36(13), С. 7421 - 7438
Опубликована: Фев. 21, 2024
Язык: Английский
Процитировано
42022 IEEE Symposium on Security and Privacy (SP), Год журнала: 2024, Номер 1, С. 845 - 861
Опубликована: Май 19, 2024
Язык: Английский
Процитировано
4Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 392 - 405
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Information Sciences, Год журнала: 2023, Номер 628, С. 196 - 207
Опубликована: Янв. 30, 2023
Язык: Английский
Процитировано
8