Knowledge distillation from relative distribution DOI
Pengfei Gao, Jiaohua Qin, Xuyu Xiang

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127736 - 127736

Опубликована: Апрель 1, 2025

Язык: Английский

Logit Standardization in Knowledge Distillation DOI
Shangquan Sun, Wenqi Ren, Jingzhi Li

и другие.

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Год журнала: 2024, Номер unknown, С. 15731 - 15740

Опубликована: Июнь 16, 2024

Язык: Английский

Процитировано

38

Reciprocal Teacher-Student Learning via Forward and Feedback Knowledge Distillation DOI
Jianmin Gou, Yu Chen, Baosheng Yu

и другие.

IEEE Transactions on Multimedia, Год журнала: 2024, Номер 26, С. 7901 - 7916

Опубликована: Янв. 1, 2024

Knowledge distillation (KD) is a prevalent model compression technique in deep learning, aiming to leverage knowledge from large teacher enhance the training of smaller student model. It has found success deploying compact models intelligent applications like transportation, smart health, and distributed intelligence. Current methods primarily fall into two categories: offline online distillation. Offline involve one-way process, transferring unvaried student, while enable simultaneous multiple peer students. However, existing often face challenges where may not fully comprehend teacher's due capacity gaps, there might be incongruence among outputs students without guidance. To address these issues, we propose novel reciprocal teacher-student learning inspired by human teaching examining through forward feedback (FFKD). Forward operates offline, follows an scheme. The rationale that enables pre-trained receive students, allowing refine its strategies accordingly. achieve this, introduce new weighting constraint gauge extent students' understanding knowledge, which then utilized strategies. Experimental results on five visual recognition datasets demonstrate proposed FFKD outperforms current state-of-the-art methods.

Язык: Английский

Процитировано

20

SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition DOI
Qiang Wan,

Zilong Huang,

Jiachen Lu

и другие.

International Journal of Computer Vision, Год журнала: 2025, Номер unknown

Опубликована: Янв. 25, 2025

Язык: Английский

Процитировано

4

Dual teachers for self-knowledge distillation DOI
Zheng Li, Xiang Li, Lingfeng Yang

и другие.

Pattern Recognition, Год журнала: 2024, Номер 151, С. 110422 - 110422

Опубликована: Март 12, 2024

Язык: Английский

Процитировано

10

Adaptive lightweight network construction method for self-knowledge distillation DOI
Siyuan Lu, Weiliang Zeng, Xueshi Li

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129477 - 129477

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Adversarially adaptive temperatures for decoupled knowledge distillation with applications to speaker verification DOI Creative Commons
Zezhong Jin, Youzhi Tu,

Chong-Xin Gan

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129481 - 129481

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Teacher Probability Reconstruction based knowledge distillation within intelligent network compression DOI Creative Commons
Han Chen, Xuyang Teng, Jiajie Su

и другие.

International Journal of Intelligent Networks, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Computer Vision Model Compression Techniques for Embedded Systems:A Survey DOI Creative Commons
Alexandre Lopes, Fernando Pereira dos Santos, Diulhio Candido de Oliveira

и другие.

Computers & Graphics, Год журнала: 2024, Номер 123, С. 104015 - 104015

Опубликована: Июль 19, 2024

Deep neural networks have consistently represented the state of art in most computer vision problems. In these scenarios, larger and more complex models demonstrated superior performance to smaller architectures, especially when trained with plenty representative data. With recent adoption Vision Transformer (ViT) based architectures advanced Convolutional Neural Networks (CNNs), total number parameters leading backbone increased from 62M 2012 AlexNet 7B 2024 AIM-7B. Consequently, deploying such deep faces challenges environments processing runtime constraints, particularly embedded systems. This paper covers main model compression techniques applied for tasks, enabling modern be used We present characteristics subareas, compare different approaches, discuss how choose best technique expected variations analyzing it on various devices. also share codes assist researchers new practitioners overcoming initial implementation each subarea trends Model Compression. Case studies are available at \href{https://github.com/venturusbr/cv-model-compression}{https://github.com/venturusbr/cv-model-compression}.

Язык: Английский

Процитировано

6

AMD: Automatic Multi-step Distillation of Large-Scale Vision Models DOI
Cheng Han, Qifan Wang,

Sohail A. Dianat

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 431 - 450

Опубликована: Ноя. 20, 2024

Язык: Английский

Процитировано

5

ATMKD: adaptive temperature guided multi-teacher knowledge distillation DOI

Yue Lin,

Shuting Yin,

Yifeng Ding

и другие.

Multimedia Systems, Год журнала: 2024, Номер 30(5)

Опубликована: Сен. 26, 2024

Язык: Английский

Процитировано

4