Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review DOI
Paul A. Adedeji, Stephen A. Akinlabi, Nkosinathi Madushele

и другие.

Journal of Cleaner Production, Год журнала: 2020, Номер 269, С. 122104 - 122104

Опубликована: Май 26, 2020

Язык: Английский

Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective DOI
Alok Raj, Gourav Dwivedi, Ankit Sharma

и другие.

International Journal of Production Economics, Год журнала: 2019, Номер 224, С. 107546 - 107546

Опубликована: Ноя. 2, 2019

Язык: Английский

Процитировано

816

Improved DEMATEL methodology for effective safety management decision-making DOI
Mohammad Yazdi, Faisal Khan, Rouzbeh Abbassi

и другие.

Safety Science, Год журнала: 2020, Номер 127, С. 104705 - 104705

Опубликована: Март 22, 2020

Язык: Английский

Процитировано

319

Blockchain technology adoption barriers in the Indian agricultural supply chain: an integrated approach DOI
Vinay Surendra Yadav, A.R. Singh, Rakesh D. Raut

и другие.

Resources Conservation and Recycling, Год журнала: 2020, Номер 161, С. 104877 - 104877

Опубликована: Май 27, 2020

Язык: Английский

Процитировано

311

Improving Risk Evaluation in FMEA With Cloud Model and Hierarchical TOPSIS Method DOI
Hu‐Chen Liu, Lien Wang, Zhiwu Li

и другие.

IEEE Transactions on Fuzzy Systems, Год журнала: 2018, Номер 27(1), С. 84 - 95

Опубликована: Июль 31, 2018

Failure mode and effect analysis (FMEA) is a prospective reliability technique used in wide range of industries for enhancing the safety systems, products, processes, services. However, conventional FMEA method has been criticized inherent drawbacks that limit effectiveness applications. In this paper, novel integrated model based on cloud theory hierarchical order preference by similarity to ideal solution (TOPSIS) developed assess rank risk failure modes. First, individual linguistic assessments modes are converted into normal clouds. Then, team members' weights calculated subjective weighting information. Finally, priority determined using TOPSIS. The newly proposed combines advantages coping with fuzziness randomness merits TOPSIS solving complex decision making problems. Two empirical examples illustrate feasibility presented together comparison existing methods.

Язык: Английский

Процитировано

308

Evaluating the factors that influence blockchain adoption in the freight logistics industry DOI
Ifeyinwa Juliet Orji, Simonov Kusi‐Sarpong, Shuangfa Huang

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2020, Номер 141, С. 102025 - 102025

Опубликована: Июль 19, 2020

Язык: Английский

Процитировано

296

GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia DOI Creative Commons
Sk Ajim Ali, Farhana Parvin, Quoc Bao Pham

и другие.

Ecological Indicators, Год журнала: 2020, Номер 117, С. 106620 - 106620

Опубликована: Июнь 21, 2020

Flood is a devastating natural hazard that may cause damage to the environment infrastructure, and society. Hence, identifying susceptible areas flood an important task for every country prevent such dangerous consequences. The present study developed framework flood-prone of Topľa river basin, Slovakia using geographic information system (GIS), multi-criteria decision making approach (MCDMA), bivariate statistics (Frequency Ratio (FR), Statistical Index (SI)) machine learning (Naïve Bayes Tree (NBT), Logistic Regression (LR)). To reach goal, different physical-geographical factors (criteria) were integrated mapped. access relationship interdependences among criteria, decision-making trial evaluation laboratory (DEMATEL) analytic network process (ANP) used. Based on experts' decisions, DEMATEL-ANP model was used compute relative weights criteria GIS-based linear combination performed derive susceptibility index. Separately, index computation through NBT-FR NBT-SI hybrid models assumed, in first stage, estimation weight each class/category conditioning factor SI FR integration these values NBT algorithm. application LR stand-alone required calculation by analysing their spatial relation with location historical events. revealed very high classes covered between 20% 47% area, respectively. validation results, past points, highlighted most performant Area Under ROC curve higher than 0.97, accuracy 0.922 value HSS 0.844. presented methodological identification can serve as alternative updating preliminary risk assessment based EU Floods Directive.

Язык: Английский

Процитировано

269

Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach DOI
Zhihua Chen, Xinguo Ming, Tongtong Zhou

и другие.

Applied Soft Computing, Год журнала: 2019, Номер 87, С. 106004 - 106004

Опубликована: Дек. 16, 2019

Язык: Английский

Процитировано

226

A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions DOI
Huchang Liao, Xiaomei Mi, Zeshui Xu

и другие.

Fuzzy Optimization and Decision Making, Год журнала: 2019, Номер 19(1), С. 81 - 134

Опубликована: Окт. 24, 2019

Язык: Английский

Процитировано

179

Remanufacturing for the circular economy: Study and evaluation of critical factors DOI
Deepak Singhal,

Sushanta Tripathy,

Sarat Kumar Jena

и другие.

Resources Conservation and Recycling, Год журнала: 2020, Номер 156, С. 104681 - 104681

Опубликована: Янв. 24, 2020

Язык: Английский

Процитировано

176

Modeling the Industry 4.0 adoption for sustainable production in Micro, Small & Medium Enterprises DOI
Akshay G. Khanzode, P. R. S. Sarma, Sachin Kumar Mangla

и другие.

Journal of Cleaner Production, Год журнала: 2020, Номер 279, С. 123489 - 123489

Опубликована: Авг. 10, 2020

Язык: Английский

Процитировано

149