Inteligencia artificial y personalización del aprendizaje: ¿innovación educativa o promesas recicladas? DOI Creative Commons
José Luis Serrano Sánchez, Juan Moreno

Edutec Revista Electrónica de Tecnología Educativa, Год журнала: 2024, Номер 89, С. 1 - 17

Опубликована: Сен. 30, 2024

Este artículo editorial introduce la sección especial titulada "Inteligencia artificial en evaluación y personalización del aprendizaje". Se presentan contrastan las conclusiones de los siete estudios seleccionados relación con investigaciones recientes. En este se ofrecen cinco principales aportaciones. Primero, muestran avances integración aprendizaje adaptativo inteligencia generativa para aprendizaje. A continuación, explora el uso educativo chatbots, destacando su capacidad facilitar experiencias más dinámicas ajustadas a necesidades estudiantes. tercer lugar, analiza automático creación modelos predictivos que apoyen toma decisiones formativas. Posteriormente, desafíos oportunidades sistemas tutoría inteligente proporcionar retroalimentación inmediata ofrecer recomendaciones diseñar ajustar itinerarios personalizados Finalmente, comparten prácticas reflexiones sobre éticos pedagógicos, dependencia algunos retos enfrenta investigación educativa.

Intersezione tra intelligenza artificiale generativa e educazione: un’ipotesi DOI Creative Commons

Giancarlo Fortino,

Fabrizio Mangione,

Francesco Pupo

и другие.

Journal of Educational Cultural and Psychological Studies (ECPS Journal), Год журнала: 2025, Номер 30

Опубликована: Янв. 15, 2025

INTERSECTION BETWEEN GENERATIVE ARTIFICIAL INTELLIGENCE AND EDUCATION: A HYPHOTHESIS Abstract This study explores the impact of integrating Generative Artificial Intelligence (GenAI) into adaptive and personalized learning environments, focusing on its diverse applications in field education. It begins with an examination evolution GenAI models frameworks, establishing selection criteria to curate case studies that showcase The analysis these highlights tangible benefits GenAI, such as increased student engagement, improved test scores, accelerated skill development. Ethical, technical, pedagogical challenges are also identified, emphasizing need for careful collaboration between educators computer science experts. findings underscore potential revolutionize By addressing technological ethical concerns, embracing human-centered approaches, experts can leverage create innovative inclusive environments. Finally, importance socio-emotional personalization evolutionary process will future

Язык: Английский

Процитировано

1

Advancing SDG 4: Harnessing Generative AI to Transform Learning, Teaching, and Educational Equity in Higher Education DOI
Vengalarao Pachava, Olusiji Adebola Lasekan,

Claudia Myrna Méndez-Alarcón

и другие.

Journal of Lifestyle and SDGs Review, Год журнала: 2025, Номер 5(2), С. e03774 - e03774

Опубликована: Янв. 7, 2025

Objective: The objective of this study is to investigate the transformative potential generative AI in advancing Sustainable Development Goal 4 (SDG 4), with aim enhancing equity, accessibility, and quality higher education through integration AI-driven systems practices. Theoretical Framework: This research underpinned by Academic Convergence (AIAC) Framework, which aligns theories such as constructivism, Vygotsky’s cultural-historical theory, Bloom’s Taxonomy. These frameworks provide a solid basis for understanding interplay between personalized learning, cognitive engagement, stakeholder collaboration, ethical governance educational ecosystems. Method: methodology adopted comprises Literature-Driven Conceptual Framework approach, synthesizing peer-reviewed studies across key themes: operational efficiency, collaborative governance. Data collection involved systematic literature reviews scholarly articles, books, conference proceedings within past decade. Results Discussion: results reveal that AIAC promotes tailored, adaptive learning pathways, enhances faculty roles AI-enabled mentors, optimizes administrative workflows predictive analytics. discussion contextualizes these findings existing theories, emphasizing framework's ability mitigate challenges algorithmic bias, equity gaps, data privacy concerns. Limitations include need empirical validation addressing resource disparities underprivileged contexts. Research Implications: practical theoretical implications are significant institutions, policymakers, practitioners. fostering innovative teaching practices, equitable access AI-enhanced tools, aligning strategies labor market demands analytics Originality/Value: contributes introducing an scalable model integrating into education. Its value lies bridging digital divide, lifelong positioning institutions leaders sustainable integration, ultimately mission SDG 4.

Язык: Английский

Процитировано

0

Improving The Process of Developing Management Personnel Competencies Through Artificial Intelligence DOI Creative Commons

Alisher Mamatov

American Journal of Economics and Business Management, Год журнала: 2025, Номер 8(1), С. 33 - 44

Опубликована: Янв. 4, 2025

The rapid development of artificial intelligence (AI) technologies has introduced intelligent approaches in various fields. In particular, these play an invaluable role modernizing the processes training, retraining, and ensuring continuous professional managerial personnel. This article presents results a survey conducted among more than 500 managers working public sector to assess effectiveness organizing courses use AI this process. Based on research results, taking into account advanced international practices, information system model is proposed. designed competencies personnel automatically recommend key that they need develop. addition, offers suggestions for mechanisms digitally manage process improving competencies, assessing its economic efficiency, integrating tools area.

Язык: Английский

Процитировано

0

Shaping generative AI governance in higher education: Insights from student perception DOI
Okky Putra Barus, Achmad Nizar Hidayanto, Eko Yon Handri

и другие.

International Journal of Educational Research Open, Год журнала: 2025, Номер 8, С. 100452 - 100452

Опубликована: Фев. 12, 2025

Язык: Английский

Процитировано

0

Personalized Learning in STEAM DOI
Nguyen Duc Son

IGI Global eBooks, Год журнала: 2025, Номер unknown, С. 1 - 30

Опубликована: Март 4, 2025

In contemporary education, personalized learning is emerging as a significant trend to enhance the learner experience and augment teaching efficacy. When integrated into STEAM, improves customization of educational content promotes cultivation creative thinking, problem-solving capacities, practical skills. This chapter synthesizes theories knowledge from many recent research papers on in field theoretical foundations implementation models, well characteristics this approach. The study focuses highlighting role teachers guiding, supporting, personalizing each student's journey experience. Teachers apply appropriate technology strategies convey interdisciplinary cultivate project-based skills, attitudes, motivation learner. also highlights some effective ways implement ensure that STEAM can develop sustainably future.

Язык: Английский

Процитировано

0

Personalized learning through AI: Pedagogical approaches and critical insights DOI

Klarisa I. Vorobyeva,

Svetlana V. Belous, N. V. Savchenko

и другие.

Contemporary Educational Technology, Год журнала: 2025, Номер 17(2), С. ep574 - ep574

Опубликована: Март 10, 2025

In this analysis, we review artificial intelligence (AI)-supported personalized learning (PL) systems, with an emphasis on pedagogical approaches and implementation challenges. We searched the Web of Science Scopus databases. After preliminary review, examined 30 publications in detail. ChatGPT machine technologies are among most often utilized tools; studies show that general education language account for majority AI applications field education. Supported by particular stressing student characteristics expectations, results automated feedback systems adaptive content distribution define AI’s educational responsibilities mostly. The study notes major difficulties three areas: technical constraints data privacy concerns; pragmatic barriers. Although curriculum integration teacher preparation considered concerns, challenges come first above technology integration. also underline need thorough professional development activities teachers tools especially targeted instruction. shows efficient application AI-enabled PL requires a comprehensive strategy addressing technological, pedagogical, ethical issues all at once. These help to describe current state provide ideas future developments as well techniques its use.

Язык: Английский

Процитировано

0

Control vs. Agency: Exploring the History of AI in Education DOI
Punya Mishra, Danah Henriksen, Lauren J. Woo

и другие.

TechTrends, Год журнала: 2025, Номер unknown

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

0

Generative artificial intelligence 4: training companion DOI

Pippa Furey

Journal of Paramedic Practice, Год журнала: 2025, Номер 17(4), С. 1 - 7

Опубликована: Апрель 2, 2025

Generative artificial intelligence (Gen AI) has gained the spotlight within education since large language models became publicly available. Gen AI demonstrated its ability to generate high-quality academic content and even pass medical exams these concerns have, at times, overshadowed potential benefits. This paper explores as a training companion in paramedic continuing professional development (CPD), highlighting how it can enhance learning, improve accessibility address individual learner needs while acknowledging problems.

Язык: Английский

Процитировано

0

Inteligencia artificial y personalización del aprendizaje: ¿innovación educativa o promesas recicladas? DOI Creative Commons
José Luis Serrano Sánchez, Juan Moreno

Edutec Revista Electrónica de Tecnología Educativa, Год журнала: 2024, Номер 89, С. 1 - 17

Опубликована: Сен. 30, 2024

Este artículo editorial introduce la sección especial titulada "Inteligencia artificial en evaluación y personalización del aprendizaje". Se presentan contrastan las conclusiones de los siete estudios seleccionados relación con investigaciones recientes. En este se ofrecen cinco principales aportaciones. Primero, muestran avances integración aprendizaje adaptativo inteligencia generativa para aprendizaje. A continuación, explora el uso educativo chatbots, destacando su capacidad facilitar experiencias más dinámicas ajustadas a necesidades estudiantes. tercer lugar, analiza automático creación modelos predictivos que apoyen toma decisiones formativas. Posteriormente, desafíos oportunidades sistemas tutoría inteligente proporcionar retroalimentación inmediata ofrecer recomendaciones diseñar ajustar itinerarios personalizados Finalmente, comparten prácticas reflexiones sobre éticos pedagógicos, dependencia algunos retos enfrenta investigación educativa.

Процитировано

0