Impact of the tariff concessions of the RCEP agreement on the structure and evolution mechanism of manufacturing trade networks DOI
Nina Zhu, Siyi Huang

Social Networks, Год журнала: 2023, Номер 74, С. 78 - 101

Опубликована: Фев. 28, 2023

Язык: Английский

The application of statistical network models in disease research DOI Creative Commons
Matthew J. Silk, Darren P. Croft, Richard J. Delahay

и другие.

Methods in Ecology and Evolution, Год журнала: 2017, Номер 8(9), С. 1026 - 1041

Опубликована: Март 11, 2017

Summary Host social structure is fundamental to how infections spread and persist, so the statistical modelling of static dynamic networks provides an invaluable tool parameterise realistic epidemiological models. We present a practical guide application network frameworks for hypothesis testing related interactions epidemiology, illustrating some approaches with worked examples using data from population wild European badgers Meles meles naturally infected bovine tuberculosis. Different empirical datasets generate particular issues non‐independence sampling constraints. therefore discuss strengths weaknesses different types answering questions relating disease transmission. argue that designed specifically analysis offer great potential in directly infection. They have be powerful tools analysing contact used studies, but remain untested use spatio‐temporal associations. As result, we developments are critical given ready availability bio‐logging studies. Furthermore, encourage improved integration into research facilitate generation novel help extend our understanding transmission natural populations.

Язык: Английский

Процитировано

104

Exponential-Family Models of Random Graphs: Inference in Finite, Super and Infinite Population Scenarios DOI Open Access
Michael Schweinberger, Pavel N. Krivitsky, Carter T. Butts

и другие.

Statistical Science, Год журнала: 2020, Номер 35(4)

Опубликована: Ноя. 1, 2020

Exponential-family Random Graph Models (ERGMs) constitute a large statistical framework for modeling dense and sparse random graphs with short- or long-tailed degree distributions, covariate effects wide range of complex dependencies. Special cases ERGMs include network equivalents generalized linear models (GLMs), Bernoulli graphs, $\beta $-models, $p_{1}$-models related to Markov fields in spatial statistics image processing. While are widely used practice, questions have been raised about their theoretical properties. These concerns that some near-degenerate many non-projective. To address such questions, careful attention must be paid model specifications underlying assumptions, the inferential settings which employed. As we discuss, near-degeneracy can affect simplistic lacking structure, but well-posed additional structure well-behaved. Likewise, lack projectivity non-likelihood-based inference, likelihood-based inference does not require projectivity. Here, review along inference. We first clarify core notions “sample” “population” ERGM framework, separating process generates population graph from observation process. then finite, super infinite scenarios. conclude consistency results, an application human brain networks.

Язык: Английский

Процитировано

74

Understanding the structure and determinants of intercity carbon emissions association network in China DOI
Hechang Cai,

Zilong Wang,

Yongfeng Zhu

и другие.

Journal of Cleaner Production, Год журнала: 2022, Номер 352, С. 131535 - 131535

Опубликована: Март 26, 2022

Язык: Английский

Процитировано

40

The structural change and influencing factors of carbon transfer network in global value chains DOI
An Pan, Ting Xiao, Ling Dai

и другие.

Journal of Environmental Management, Год журнала: 2022, Номер 318, С. 115558 - 115558

Опубликована: Июль 2, 2022

Язык: Английский

Процитировано

39

A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model DOI
Philip Leifeld, Skyler Cranmer

Network Science, Год журнала: 2019, Номер 7(1), С. 20 - 51

Опубликована: Март 1, 2019

Abstract The temporal exponential random graph model (TERGM) and the stochastic actor-oriented (SAOM, e.g., SIENA) are popular models for longitudinal network analysis. We compare these theoretically, via simulation, through a real-data example in order to assess their relative strengths weaknesses. Though we do not aim make general claim about either being superior other across all specifications, highlight several theoretical differences analyst might consider find that with some two behave very similarly, while each out-predicts one more specific assumptions of respective met.

Язык: Английский

Процитировано

71

Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models DOI

Helian Xu,

Lianyue Feng,

Gang Wu

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2021, Номер 149, С. 111402 - 111402

Опубликована: Июль 6, 2021

Язык: Английский

Процитировано

48

The impact of the Belt and Road Initiative on the natural gas trade: A network structure dependence perspective DOI
Yaoqi Guo,

Zhao Boya,

Hongwei Zhang

и другие.

Energy, Год журнала: 2022, Номер 263, С. 125912 - 125912

Опубликована: Ноя. 2, 2022

Язык: Английский

Процитировано

33

Evolutionary analysis of the global rare earth trade networks DOI
Guihai Yu,

Chao Xiong,

Jianxiong Xiao

и другие.

Applied Mathematics and Computation, Год журнала: 2022, Номер 430, С. 127249 - 127249

Опубликована: Май 25, 2022

Язык: Английский

Процитировано

32

Topological analysis, endogenous mechanisms, and supply risk propagation in the polycrystalline silicon trade dependency network DOI

Chaohao miao,

Yanfang wan,

Meiling Kang

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 439, С. 140657 - 140657

Опубликована: Янв. 11, 2024

Язык: Английский

Процитировано

8

Evolution of structural properties of the global strategic emerging industries' trade network and its determinants: An TERGM analysis DOI
Xinyi Wang, Bo Chen, Na Hou

и другие.

Industrial Marketing Management, Год журнала: 2024, Номер 118, С. 78 - 92

Опубликована: Фев. 23, 2024

Язык: Английский

Процитировано

7