Soft sensing of NOx emission from waste incineration process based on data de-noising and bidirectional long short-term memory neural networks DOI
Zhenghui Li,

Zhuliang Yu,

Da Chen

и другие.

Waste Management & Research The Journal for a Sustainable Circular Economy, Год журнала: 2024, Номер unknown

Опубликована: Июль 30, 2024

Continuous emission monitoring system is commonly employed to monitor NOx emissions in municipal solid waste incineration (MSWI) processes. However, it still encounters the challenges of regular maintenance and measurement lag. These issues significantly impact accurate stable control emissions. Therefore, developing a soft sensor complement hardware becomes imperative. Considering data noise, dynamic nonlinearity, time series characteristics volatility MSWI process, this article introduces model for prediction utilizing complete ensemble empirical mode decomposition adaptive noise (CEEMDAN)-wavelet threshold (WT) method bidirectional long short-term memory (Bi-LSTM). Firstly, original signal decomposed into group intrinsic functions (IMFs) using CEEMDAN. Subsequently, WT processes high-frequency IMFs that are noise-dominant. Then, all reconstructed obtain denoized signal. Finally, Bi-LSTM predict Compared conventional modelling approaches, proposed demonstrates best predictive performance. The mean absolute percentage error, root-mean-squared error average on test set 3.75%, 5.34 mg m −3 4.34 , respectively. provides new sensing It holds significant practical value precise reference research key process parameters.

Язык: Английский

Evaluating the Performance of Several Data Preprocessing Methods Based on GRU in Forecasting Monthly Runoff Time Series DOI
Wenchuan Wang,

Yu-jin Du,

Kwok‐wing Chau

и другие.

Water Resources Management, Год журнала: 2024, Номер 38(9), С. 3135 - 3152

Опубликована: Март 6, 2024

Язык: Английский

Процитировано

19

Runoff prediction using a multi-scale two-phase processing hybrid model DOI
Xuehua Zhao, Huifang Wang,

Qiucen Guo

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

3

DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion DOI
Wenchuan Wang,

Wei-can Tian,

Xiao-xue Hu

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 643, С. 131996 - 131996

Опубликована: Сен. 16, 2024

Язык: Английский

Процитировано

17

An improved graph neural network integrating indicator attention and spatio-temporal correlation for dissolved oxygen prediction DOI Creative Commons
Fei Ding, Shilong Hao,

Mingcen Jiang

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103126 - 103126

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

A novel approach for quantifying the influence intensity of urban water and greenery resources on microclimate for efficient utilization DOI Creative Commons
Fan Fei, Yuling Xiao, Luyao Wang

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 112, С. 105597 - 105597

Опубликована: Июнь 20, 2024

Climate changes have led to increasing global energy consumption, detrimental the sustainable development of society. Urban blue-green infrastructure (UBGI) can improve urban microclimate. However, influence intensity UBGI on microclimate has not been quantified deeply use efficiency water and greenery resources. To solve research deficiencies, this study numerically simulated for 44 scenarios with different resource configurations (various body areas coverages) in summer. Based simulations, developed novel mathematical models thermo-environment (BGTE) quantify UBGI. The results indicated that daytime synergies first increased then decreased time. significance time (t), area (Sw), tree coverage rate (TCR), shrub (SCR), grassland (GLCR) synergy was by artificial neural network: t (39.4%), Sw (22.6%), TCR (22.0%), SCR (13.2%), GLCR (2.8%). make overall effect relatively efficient, should be less than 10000 m2, greater 65%, close 15%. This provides practical ideas efficient

Язык: Английский

Процитировано

6

Enhanced monthly streamflow prediction using an input–output bi-decomposition data driven model considering meteorological and climate information DOI

Qiucen Guo,

Xuehua Zhao, Yuhang Zhao

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(8), С. 3059 - 3077

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

5

Modeling the effect of meteorological drought on lake level changes with machine learning techniques DOI
Özlem Terzi, Dilek Taylan, Tahsin Baykal

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 227 - 246

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

WaveTransTimesNet: an enhanced deep learning monthly runoff prediction model based on wavelet transform and transformer architecture DOI
Dongmei Xu, Zong Li, Wenchuan Wang

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

The dynamics of lowland river sections of Danube and Tisza in the Carpathian basin DOI Creative Commons
Imre M. Jánosi,

István Zsuffa,

Tibor Bíró

и другие.

Frontiers in Earth Science, Год журнала: 2025, Номер 13

Опубликована: Фев. 12, 2025

The paper presents a detailed statistical analysis of data from 41 hydrometric stations along the Danube (section in Carpathian Basin) and its longest tributary, Tisza River. Most records cover 2–3 decades with an automated high temporal sampling frequency (15 min), few span 120 years daily or half-daily records. is not even exhibits strong irregularities. demonstrates that cubic spline fits down-sampling (where necessary) produce reliable, evenly sampled time series smoothly reconstruct water level river discharge data. Almost all indicate decadal decreasing trend for annual maximum values. timing (day year) maxima minima evaluated. While minimum values do show coherent tendencies, exhibit increasing trends but (earlier onset). Various possibilities explanations these observations are listed. empirical histograms changes can be well-fitted by piecewise-exponential functions containing four three sections, consistent understanding deterministic rather than stochastic processes, as well known hydrology. Such tests serve benchmarks modeling levels discharges. Extracted periods Lomb-Scargle algorithm (suitable unevenly series) long-time means expected seasonality. Resampled (1-hour frequency) were evaluated standard Fourier Welch procedures, revealing some secondary peaks spectra indicating quasi-periodic components signals. Further significance progress, attempts at explanations. Secondary may environmental changes, future investigation which could reveal important correlations.

Язык: Английский

Процитировано

0

Enhancing monthly runoff prediction: a data-driven framework integrating variational mode decomposition, enhanced artificial rabbit optimization, support vector regression, and error correction DOI
Ning He, Wenchuan Wang

Earth Science Informatics, Год журнала: 2025, Номер 18(3)

Опубликована: Фев. 17, 2025

Язык: Английский

Процитировано

0