Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 11, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 11, 2024
Язык: Английский
European Journal of Investigation in Health Psychology and Education, Год журнала: 2025, Номер 15(1), С. 9 - 9
Опубликована: Янв. 18, 2025
Large language models (LLMs) offer promising possibilities in mental health, yet their ability to assess disorders and recommend treatments remains underexplored. This quantitative cross-sectional study evaluated four LLMs (Gemini 2.0 Flash Experimental), Claude (Claude 3.5 Sonnet), ChatGPT-3.5, ChatGPT-4) using text vignettes representing conditions such as depression, suicidal ideation, early chronic schizophrenia, social phobia, PTSD. Each model’s diagnostic accuracy, treatment recommendations, predicted outcomes were compared with norms established by health professionals. Findings indicated that for certain conditions, including depression PTSD, like ChatGPT-4 achieved higher accuracy human However, more complex cases, LLM performance varied, achieving only 55% while other professionals performed better. tended suggest a broader range of proactive treatments, whereas recommended targeted psychiatric consultations specific medications. In terms outcome predictions, generally optimistic regarding full recovery, especially treatment, lower recovery rates partial rates, particularly untreated cases. While range, conservative highlight the need professional oversight. provide valuable support diagnostics planning but cannot replace discretion.
Язык: Английский
Процитировано
1Journal of the American Medical Informatics Association, Год журнала: 2025, Номер unknown
Опубликована: Март 22, 2025
Abstract Objective screening is a labor-intensive component of systematic review involving repetitive application inclusion and exclusion criteria on large volume studies. We aimed to validate language models (LLMs) used automate abstract screening. Materials Methods LLMs (GPT-3.5 Turbo, GPT-4 GPT-4o, Llama 3 70B, Gemini 1.5 Pro, Claude Sonnet 3.5) were trialed across 23 Cochrane Library reviews evaluate their accuracy in zero-shot binary classification for Initial evaluation balanced development dataset (n = 800) identified optimal prompting strategies, the best performing LLM-prompt combinations then validated comprehensive replicated search results 119 695). Results On dataset, exhibited superior performance human researchers terms sensitivity (LLMmax 1.000, humanmax 0.775), precision 0.927, 0.911), 0.904, 0.865). When evaluated consistent (range 0.756-1.000) but diminished 0.004-0.096) due class imbalance. In addition, 66 LLM-human LLM-LLM ensembles perfect with maximal 0.458 decreasing 0.1450 over dataset; conferring workload reductions ranging between 37.55% 99.11%. Discussion Automated can reduce while maintaining quality. Performance variation highlights importance domain-specific validation before autonomous deployment. achieve similar benefits oversight all records. Conclusion may labor cost maintained or improved accuracy, thereby increasing efficiency quality evidence synthesis.
Язык: Английский
Процитировано
1Current Epidemiology Reports, Год журнала: 2025, Номер 12(1)
Опубликована: Март 24, 2025
Язык: Английский
Процитировано
1BMJ evidence-based medicine, Год журнала: 2025, Номер unknown, С. bmjebm - 113320
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
0JMIR Medical Informatics, Год журнала: 2025, Номер 13, С. e64682 - e64682
Опубликована: Март 12, 2025
Abstract This study demonstrated that while GPT-4 Turbo had superior specificity when compared to GPT-3.5 (0.98 vs 0.51), as well comparable sensitivity (0.85 0.83), processed 100 studies faster (0.9 min 1.6 min) in citation screening for systematic reviews, suggesting may be more suitable due its higher and highlighting the potential of large language models optimizing literature selection.
Язык: Английский
Процитировано
0Journal of Evidence-Based Medicine, Год журнала: 2025, Номер 18(1)
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Clinical and Translational Science, Год журнала: 2025, Номер 18(4)
Опубликована: Апрель 1, 2025
ABSTRACT Large language models (LLMs) have emerged as powerful tools in many fields, including clinical pharmacology and translational medicine. This paper aims to provide a comprehensive primer on the applications of LLMs these disciplines. We will explore fundamental concepts LLMs, their potential drug discovery development processes ranging from facilitating target identification aiding preclinical research trial analysis, practical use cases such assisting with medical writing accelerating analytical workflows quantitative pharmacology. By end this paper, pharmacologists scientists clearer understanding how leverage enhance efforts.
Язык: Английский
Процитировано
0Surgical Endoscopy, Год журнала: 2025, Номер unknown
Опубликована: Апрель 18, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 11, 2024
Язык: Английский
Процитировано
0