DQL-assisted competitive evolutionary algorithm for energy-aware robust flexible job shop scheduling under unexpected disruptions DOI
Shicun Zhao, Hong Zhou, Yujie Zhao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101750 - 101750

Опубликована: Окт. 25, 2024

Язык: Английский

A Learning-Driven Multi-Objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations DOI

Zhengpei Zhang,

Yaping Fu, Kaizhou Gao

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 196, С. 110484 - 110484

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

25

Personalized Indicator Based Evolutionary Algorithm for Uncertain Constrained Many‐Objective Optimization Problem With Interval Functions DOI Open Access
Jie Wen, Qian Wang, Haiying Dong

и другие.

Concurrency and Computation Practice and Experience, Год журнала: 2025, Номер 37(3)

Опубликована: Янв. 13, 2025

ABSTRACT In practical engineering problems, uncertainties due to prediction errors and fluctuations in equipment efficiency often lead constrained many‐objective optimization problem with interval parameters (ICMaOPs). These problems pose significant challenges for evolutionary algorithms, particularly balancing solution convergence, diversity, feasibility, uncertainty. To address these challenges, a personalized indicator‐based algorithm (PI‐ICMaOEA) specifically designed ICMaOPs is proposed. The PI‐ICMaOEA integrates comprehensive quality indicator that encapsulates uncertainty, feasibility factors, converting multiple objectives high‐dimensional search spaces into single evaluative metric. Each factor's weight assigned based on individual performance, objective dimension, the evolving conditions of population. By prioritizing individuals excellent values mating environmental selection, effectively enhances selection pressure spaces. Comparative simulations demonstrate highly competitive, offering robust ICMaOPs.

Язык: Английский

Процитировано

0

Integrated harvest and distribution scheduling of fresh agricultural products for multiple farms using a Q-learning-based artificial bee colony algorithm with problem knowledge DOI

Xiaomeng Ma,

Xujin Pu, Yaping Fu

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 95, С. 101957 - 101957

Опубликована: Апрель 20, 2025

Язык: Английский

Процитировано

0

Low-carbon berth allocation: An analysis of the effectiveness of an enhanced multi-objective artificial bee colony algorithm based on a case study DOI

Xiaomeng Ma,

Xujin Pu

Ocean & Coastal Management, Год журнала: 2024, Номер 261, С. 107529 - 107529

Опубликована: Дек. 19, 2024

Язык: Английский

Процитировано

2

A multi-objective brain storm optimization for integrated distributed flexible job shop and distribution problems DOI Creative Commons
Yanhe Jia, Yaoyao Zhou, Yaping Fu

и другие.

Heliyon, Год журнала: 2024, Номер 10(16), С. e36318 - e36318

Опубликована: Авг. 1, 2024

Production and distribution are critical components of the furniture supply chain, achieving optimal performance through their integration has become a vital focus for both academic business communities. Moreover, as economic globalization progresses, distributed manufacturing pioneering production technique. Via leveraging flexible system, mass at lower costs can be achieved. To this end, study presents an integrated job shop problem to minimize makespan total tardiness. In our research, set custom orders from different customers processed among shops then delivered by vehicles due date. distinctly show presented problem, mixed integer mathematical programming model is created, multi-objective brain storm optimization method introduced considering problem's features. comparison other three advanced methods, superiority algorithm created showcased. The findings experiments demonstrate that constructed have remarkable competitiveness in addressing being examined.

Язык: Английский

Процитировано

1

Open shop scheduling with group and transportation operations by learning-driven hyper-heuristic algorithms DOI
Yifeng Wang, Yaping Fu, Kaizhou Gao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101757 - 101757

Опубликована: Окт. 19, 2024

Язык: Английский

Процитировано

1

DQL-assisted competitive evolutionary algorithm for energy-aware robust flexible job shop scheduling under unexpected disruptions DOI
Shicun Zhao, Hong Zhou, Yujie Zhao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101750 - 101750

Опубликована: Окт. 25, 2024

Язык: Английский

Процитировано

1