Опубликована: Апрель 4, 2024
Язык: Английский
Опубликована: Апрель 4, 2024
Язык: Английский
Applied Sciences, Год журнала: 2024, Номер 15(1), С. 295 - 295
Опубликована: Дек. 31, 2024
This study presents an approach to autonomous navigation for wheeled robots, combining radar-based dynamic obstacle detection with a BiGRU-based deep reinforcement learning (DRL) framework. Using filtering and tracking algorithms, the proposed system leverages radar sensors cluster object points track obstacles, enhancing precision by reducing noise fluctuations. A BiGRU-enabled DRL model is introduced, allowing robot process sequential environmental data make informed decisions in unpredictable environments, achieving collision-free paths reaching goal. Simulation experimental results validate method’s efficiency adaptability, highlighting its potential real-world applications scenarios.
Язык: Английский
Процитировано
4Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
1